Recent advances in high frame rate complementary metal-oxide-semiconductor (CMOS) cameras coupled with high repetition rate lasers have enabled laser-based imaging measurements of the temporal evolution of turbulent reacting flows. This measurement capability provides new opportunities for understanding the dynamics of turbulence-chemistry interactions, which is necessary for developing predictive simulations of turbulent combustion. However, quantitative imaging measurements using high frame rate CMOS cameras require careful characterization of the their noise, non-linear response, and variations in this response from pixel to pixel. We develop a noise model and calibration tools to mitigate these problems and to enable quantitative use of CMOS cameras. We have demonstrated proof of principle for image de-noising using both wavelet methods and Bayesian inference. The results offer new approaches for quantitative interpretation of imaging measurements from noisy data acquired with non-linear detectors. These approaches are potentially useful in many areas of scientific research that rely on quantitative imaging measurements.