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Motivation: Uncertainties in Carbon Flux
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Friedlingstein, 2014

CMIP5: RCP8.5 Scenario CMIP6: 1%/yr CO2 incr. Scenario

Arora, 2020



Overview: Surrogate-based Calibration of E3SM Land Model
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• Land-surface model parametric uncertainty remains large
• High model expense à Need for model surrogates for sample-intensive studies, such as …

• Global sensitivity analysis (forward UQ)
• Model calibration (inverse UQ)

• Major challenges
• Expensive model evaluation, small ensembles
• High dimensional (spatio-temporal) outputs

• Reduced-dimensional, inexpensive surrogate construction via 
   Karhunen-Loève expansions and Neural Networks (KLNN surrogate)
• Surrogate enables global sensitivity analysis and Bayesian model calibration 
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E3SM Land Model (ELM)
Satellite Phenology version 

used for this study

Quantity of Interest: 
Gross primary productivity 

(GPP)…

… resolved in space, …

… and in time.
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Forward UQ

a.k.a. surrogate construction, global sensitivity analysis, 
uncertainty propagation
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Dimensionality Reduction via Karhunen-Loève Expansion
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• Spatio-temporal model output 𝑓(𝜆; 𝑧), where 𝑧 = (𝑥, 𝑦, 𝑡) 

• Output field has large dimensionally 𝑁 = 𝑁!×𝑁"×𝑁#
• Eigenpairs (𝜇$, 𝜙$(𝑧)) are found via eigen-solve

• Analysis reduces to 𝑀 ≪ 𝑁 eigenfeatures 𝜉%, … , 𝜉$
• Under the hood: this is essentially an SVD

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

Uncertain parameters “Certain” conditions



KL is essentially a Singular Value Decomposition
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𝑓 𝜆𝑘; 𝑧𝑖 − 𝑓(𝑧𝑖) ≈ ∑
!"#

$
𝜉!(𝜆𝑘) 𝜇!𝜙!(𝑧𝑖)

𝐹𝑘𝑖 = ∑
!"#

	 $
𝑈𝑘𝑚𝛴𝑚𝑚𝑉𝑖𝑚

KL

SVD 𝐹 =
	
𝑈	𝛴	𝑉𝑇

Karhunen-Loève expansion 
-–  is centralized (first subtract the mean)
-–  often comes with the continuous form
-–  has random variable interpretation for the latent features (aka left singular vectors) 𝜉$ 



KL truncation relies on variance retention
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𝑉𝑎𝑟 𝑓 𝑧 = ∑
!"#

$
𝜇!𝜙2!(𝑧)

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

𝑉𝑎𝑟 𝑓 = ∑
!"#

$
𝜇!

𝑀	 = 	argmin𝑀′	

∑
!"#

$!

𝜇!

∑
!"#

&
𝜇!

> 0.99



KL+NN = reduced dimensional spatio-temporal surrogate
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The goal is to construct a surrogate with respect to uncertain parameters 𝜆, such that 
𝑓(𝜆; 𝑧&) ≈ 𝑓'(𝜆; 𝑧&) for all conditions 𝑧&.

Instead of building surrogate for each individual 𝑧& for 𝑖 = 1,… ,𝑁, 
we construct neural network (NN) surrogate for 𝜉%, … , 𝜉( where 𝑀 ≪ 𝑁.

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

𝜉!''(𝜆)In
pu

t P
ar

am
et

er
s Eigen-

features

𝜆!, … , 𝜆" 𝜉!, … , 𝜉#
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PFT Name Short Count
Boreal evergreen needleleaf tree NEBT 22
Temperate evergreen needleleaf tree NETT 11
Boreal deciduous needleleaf tree NDBT 1
Tropical evergreen broadleaf tree BEPT 8
Temperate evergreen broadleaf tree BETT 5
Tropical deciduous broadleaf tree BDPT 3
Temperate deciduous broadleaf tree BDTT 20
Boreal deciduous broadleaf tree BDBT 1
Temperate deciduous broadleaf shrub BDTS 3
Boreal deciduous broadleaf shrub BDBS 1
C3 arctic grass C3AG 4
C3 non-arctic grass C3NG 16
C4 grass C4G 1

Selected set of 96 FLUXNET sites

… selected 
to represent 
a range of 
Plant Functional 
Types (PFTs)



Case studies 
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                     Time
  Space      

𝐍𝐭 =	180 Months

(full 15 years)

𝐍𝐭 = 12 Months
(average out
interannual)

𝐍𝐭 = 4 Seasons
(average out 

within seasons)

𝐍𝐭 = 1
 (global 

time-average)

FLUXNET sites
𝐍𝐱 = 96 

(or group by PFTs)
F180 F12 F4 F1

Global 144x96
𝐍𝐱 ≅ 4000 

vegetated cells
(or regional zoom) 

G180 G12 G4 G1
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Dimensionality reduction via KL

Per-site dimensionality reduction Per-PFT dimensionality reduction
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KL+NN: two levels of approximations

Two randomly 
selected samples
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Instead of 96x180=17280 surrogates, we build 
a single NN surrogate in the reduced, 8-dimensional latent space

KL+NN surrogate performance



Sensitivity at 96 FLUXNET sites:
RuBisCO leaf fraction (fLNR) is the most impactful param.
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Case studies 
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  Space      
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(average out
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F180 F12 F4 F1

Global 144x96
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Dimensionality reduction from 4000 cells x 4 seasons = 16000 to 11-dimensional latent space

ELM Model Samples KLNN Surrogate Samples



fLNR sensitivity across the globe
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mbbopt sensitivity across the globe
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Inverse UQ

a.k.a. calibration or parameter estimation
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Reference Data
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FLUXCOM:  A gridded GPP benchmark
upscaled from FLUXNET network
using meteorology, remote sensing

https://www.fluxcom.org/
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Bayesian Likelihood is constructed in the reduced space
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𝑝(𝜆|𝑔) ∝ 𝑝(𝑔|𝜆)𝑝(𝜆)Bayes’ formula

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
!"#

$ (𝜂! − 𝜉!%%(𝜆))'

2𝜎'Reduced likelihood :

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
("#

% (𝑔(𝑧() − 𝑓(𝜆; 𝑧())'

2𝜎('Pointwise likelihood (naïve) :

Eigenfeatures 𝜉!’s are uncorrelated, zero-mean, unit variance, 
hence iid gaussian likelihood is a much better assumption in the reduced space.



Surrogate-enabled 
calibration workflow
incorporates both 

forward and inverse 
UQ tasks
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Latent space distance is well-correlated with the physical 
distance between model and data

US-Ha1

US-GLE
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RuBisCO leaf fraction (fLNR) is 
the most constrained parameter 

Bayesian MCMC calibration enabled by KLNN surrogate
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Time evolution
of GPP at select 
FLUXNET sites
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Calibration brings model prediction closer to reference data

Site-specific parameters
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Summary
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• Karhunen-Loève (KL) decomposition reduces the spatio-temporal output 
dimensionality, taking advantage of correlations over space and time.

• Neural network (NN) surrogate in the reduced eigenspace leads to a 
spatio-temporal KLNN surrogate that is a small fraction of ELM cost.

• KLNN surrogate enables sampling based global sensitivity analysis and 
Bayesian calibration performed in the eigenspace.

Ongoing work: 
• Potential PFT-dependent reparameterization to improve model’s ability 
   to match reference data.
• Calibration with embedded model discrepancy to avoid overfitting.
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Additional Material



Motivation: Model Uncertainty dominates for Land Model
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Bonan and Doney, 
Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018



Polynomial Chaos intro 
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• Our traditional tool for uncertainty representation and propagation
• Random variables represented as polynomial expansion of standard random variables, 

such as gaussian or uniform 𝜉 = ∑
D"#

E
𝑐𝑘 𝜓D(𝜂)

• Convenient for uncertainty propagation

𝑓(𝜉) = ∑
D"F

E
𝑓𝑘 𝜓D(𝜂)

• Moment estimation

• Global Sensitivity Analysis (a.k.a. Sobol indices or variance-based decomposition)



KL+PC = reduced dimensional spatio-temporal surrogate
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The goal is to construct a surrogate with respect to uncertain parameters 𝜆, such that 
𝑓(𝜆; 𝑧&) ≈ 𝑓'(𝜆; 𝑧&) for all conditions 𝑧&.

Instead of building surrogate for each individual 𝑧& for 𝑖 = 1,… ,𝑁, 
we construct polynomial chaos (PC) surrogate for 𝜉%, … , 𝜉( where 𝑀 ≪ 𝑁.

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

𝜉!GH(𝜆)In
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𝜆!, … , 𝜆" 𝜉!, … , 𝜉#



PC vs NN comparison
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Polynomial Chaos

Neural Network

Simple regression, 
easy to train

More flexible, 
highly customizable

GSA and variance decomposition,
More interpretable

Multiple outputs at once,
More accurate (in theory)



PC vs NN comparison
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96 temporal surrogates 
with each 180 outputs

Single spatio-temporal 
surrogate 

with 96x180 outputs



Likelihood in the reduced space is still Gaussian, but MVN

38

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝜂" − 𝜉"&&(𝜆))'

2𝜎'

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝑔(𝑧") − 𝑓(𝜆; 𝑧"))&

2𝜎"&

Pointwise likelihood (old) :

𝑔(𝑧$) = 𝑓(𝜆; 𝑧$) + 𝜎$𝜖$

𝜂% = 𝜉%&&(𝜆) + 𝜎𝜖
˜
%

𝑔(𝑧$) = 𝑓(𝜆; 𝑧$) + ∑
%()

*
𝜖
˜
% 𝜇%𝜙%(𝑧$)

Data model (old) :

Data model (new) :

i.i.d. Normal

MVN (physics-based)Latent-space likelihood (new) :
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Local (site-specific) fLNR posterior PDFs
Grouped by PFTs
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Fixed global fLNR parameter Local fLNR parameter

Two calibration regimes
One global surrogate One surrogate per grid cell
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Localized calibration works slightly better
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Correlate PFT fractions globally with best fLNR values

PFT Fractions for all PFTs
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Correlate PFT fractions globally with best fLNR values


