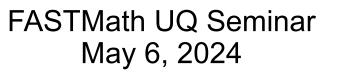
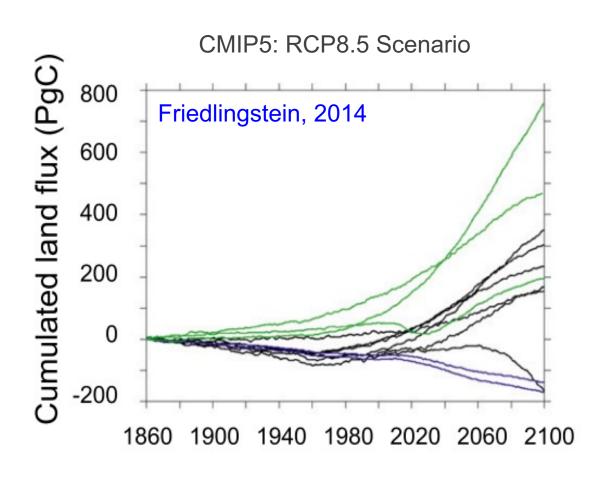
Reduced-Dimensional Neural Network Surrogate Construction for the E3SM Land Model

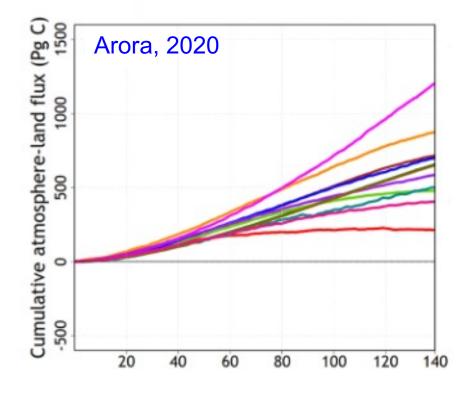
Khachik Sargsyan (SNL), Daniel Ricciuto (ORNL)



Motivation: Uncertainties in Carbon Flux

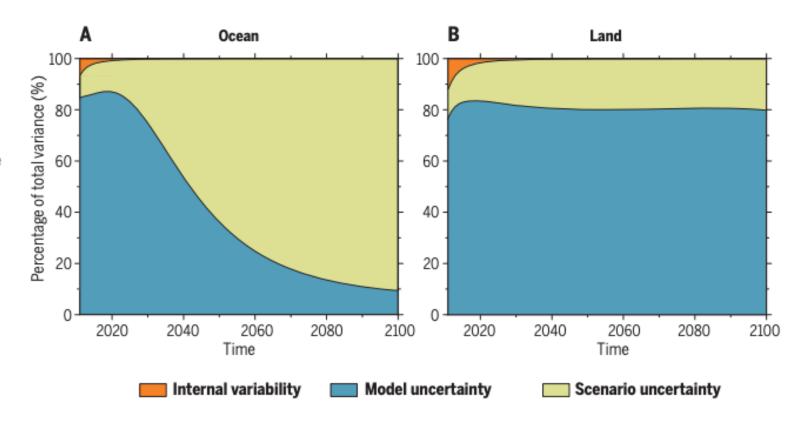


CMIP6: 1%/yr CO₂ incr. Scenario



Motivation: Model Uncertainty dominates for Land Model

Fig. 4. Ocean and land carbon cycle uncertainty. The percentage of total variance attributed to internal variability, model uncertainty, and scenario uncertainty in projections of cumulative global carbon uptake from 2006 to 2100 differs widely between (A) ocean and (B) land. The ocean carbon cycle is dominated by scenario uncertainty by the middle of the century, but uncertainty in the land carbon cycle is mostly from model structure. Data are from 12 ESMs using four different scenarios (94).



Bonan and Doney,

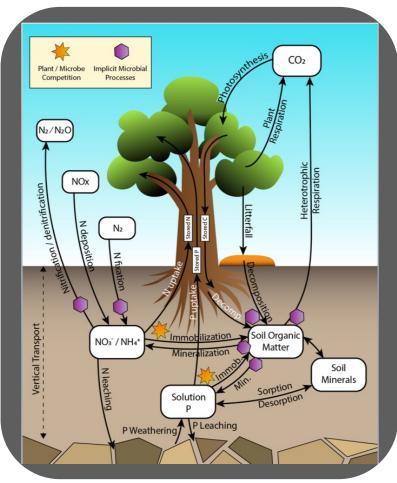
Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018

Overview: Surrogate-based Calibration of E3SM Land Model

- Land-surface model parametric uncertainty remains large
- High model expense → Need for model surrogates for sample-intensive studies, such as ...
 - Global sensitivity analysis (forward UQ)
 - Model calibration (inverse UQ)
- Major challenges
 - Expensive model evaluation, small ensembles
 - High dimensional (spatio-temporal) outputs

- Reduced-dimensional, inexpensive surrogate construction via
 Karhunen-Loève expansions and Neural Networks (KLNN surrogate)
- Surrogate enables global sensitivity analysis and Bayesian model calibration

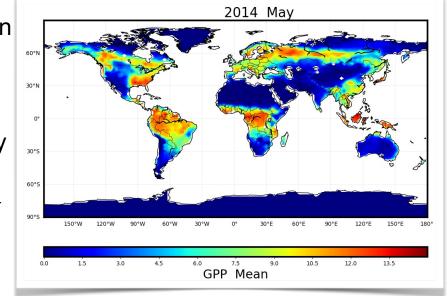
E3SM Land Model (ELM): focus on carbon and energy cycle

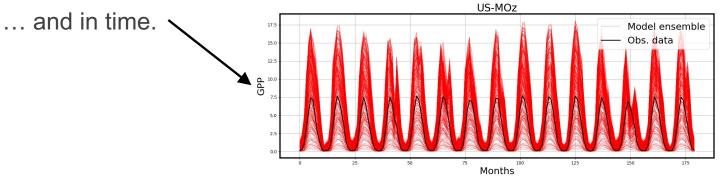


Satellite Phenology version used for this study

Quantity of Interest:
Gross primary productivity
(GPP)...

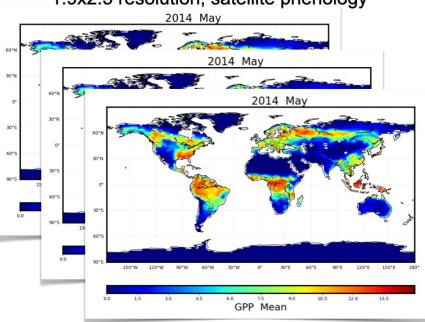
... resolved in space, ...





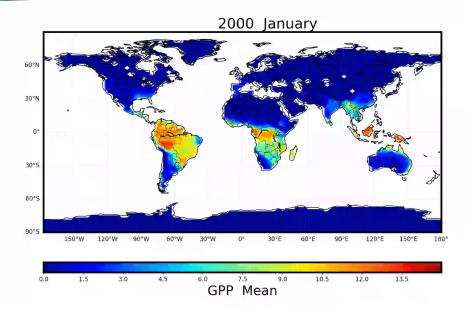
Model Ensemble (275 samples)

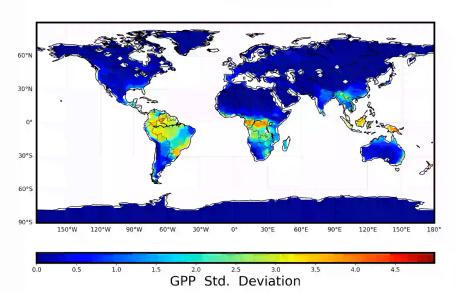
1.9x2.5 resolution, satellite phenology



Perturbed Parameters

Parameter	Description	Min	Max
flnr	Fraction of leaf in in RuBisCO	0	0.25
mbbopt	Stomatal slope (Ball-Berry)	2	13
bbbopt	Stomatal intercept (Ball-Berry)	1000	40000
roota_par	Rooting depth distribution	1	10
vcmaxha	Activation energy for Vcmax	50000	90000
vcmaxse	Engropy for Vcmax	640	700
jmaxha	Activation energy for jmax	50000	90000
dayl_scaling	Day length factor	0	2.5
dleaf	Characteristic leaf dimension	0.01	0.1
xl	Leaf/stem orientation index	-0.6	0.8





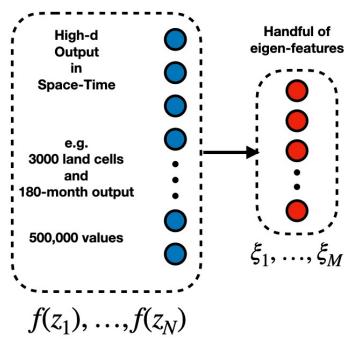
Dimensionality Reduction via Karhunen-Loève Expansion

$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$$

Uncertain parameters

"Certain" conditions

- Spatio-temporal model output $f(\lambda; z)$, where z = (x, y, t)
- Output field has large dimensionally $N = N_x \times N_y \times N_t$
- Eigenpairs $(\mu_m, \phi_m(z))$ are found via eigen-solve
- Analysis reduces to $M \ll N$ eigenfeatures ξ_1, \dots, ξ_m
- Under the hood: this is essentially an SVD



KL is essentially a Singular Value Decomposition

KL
$$f(\lambda^k;zi)-\overline{f}(z_i)pprox\sum_{m=1}^M \xi_m(\lambda^k)\sqrt{\mu_m}\phi_m(zi)$$
 $F_{ki}=\sum_{m=1}^M U_{km}\Sigma_{mm}V_{im}$ SVD $F=U\ \Sigma\ V^T$

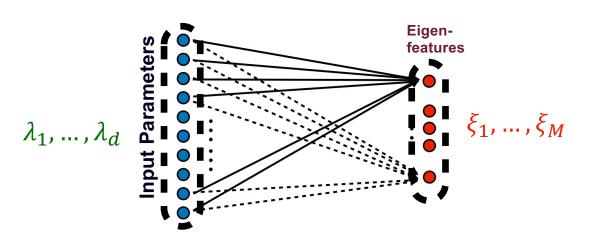
Karhunen-Loève expansion

- is centralized (first subtract the mean)
- often comes with the continuous form
- has random variable interpretation for the latent features (aka left singular vectors) ξ_m

KL+PC = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters λ , such that $f(\lambda; z_i) \approx f_s(\lambda; z_i)$ for all conditions z_i .

Instead of building surrogate for each individual z_i for i = 1, ..., N, we construct polynomial chaos (PC) surrogate for $\xi_1, ..., \xi_M$ where $M \ll N$.



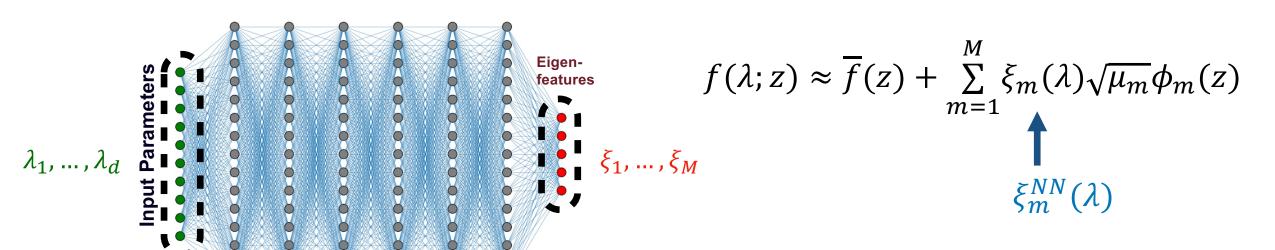
$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_{m}(\lambda) \sqrt{\mu_{m}} \phi_{m}(z)$$

$$\xi_{m}^{PC}(\lambda)$$

KL+NN = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters λ , such that $f(\lambda; z_i) \approx f_s(\lambda; z_i)$ for all conditions z_i .

Instead of building surrogate for each individual z_i for i = 1, ..., N, we construct neural network (NN) surrogate for $\xi_1, ..., \xi_M$ where $M \ll N$.



PC vs NN comparison

Polynomial Chaos

Simple regression, easy to train

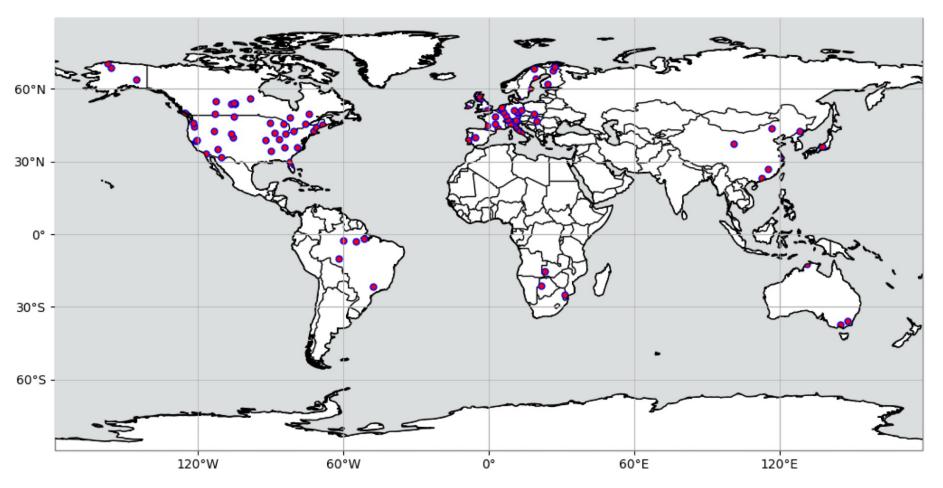
GSA and variance decomposition, More interpretable

Neural Network

More flexible, highly customizable

Multiple outputs at once, More accurate (in theory)

96 FLUXNET sites

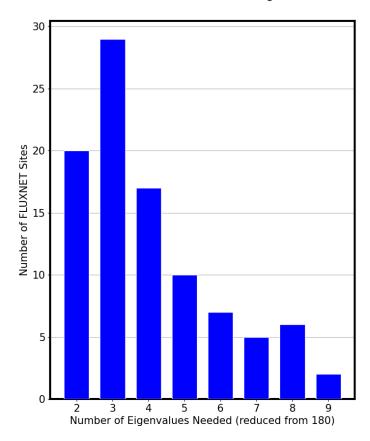


Several case studies

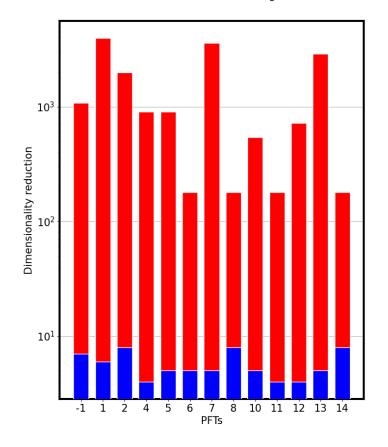
Time Space	$N_t = 180$ Months (full 15 years)	N _t = 12 Months (average out interannual)	N _t = 4 Seasons (average out within seasons)	N _t = 1 (global time-average)
FLUXNET sites $N_x = 96$ (or group by PFTs)	F180	F12	F4	F1
Global 144x96 $N_x \cong 4000$ vegetated cells (or regional zoom)	G180	G12	G4	G1

Dimensionality reduction via KL

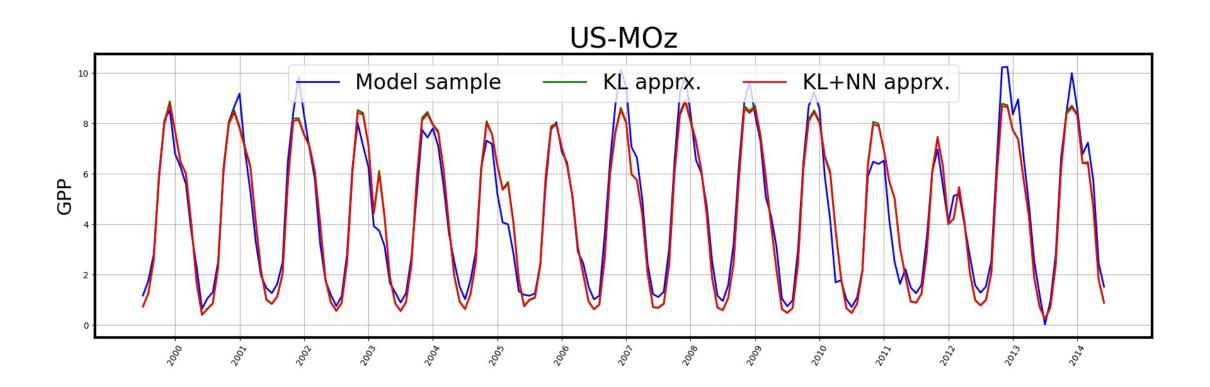
Per-site dimensionality reduction



Per-PFT dimensionality reduction

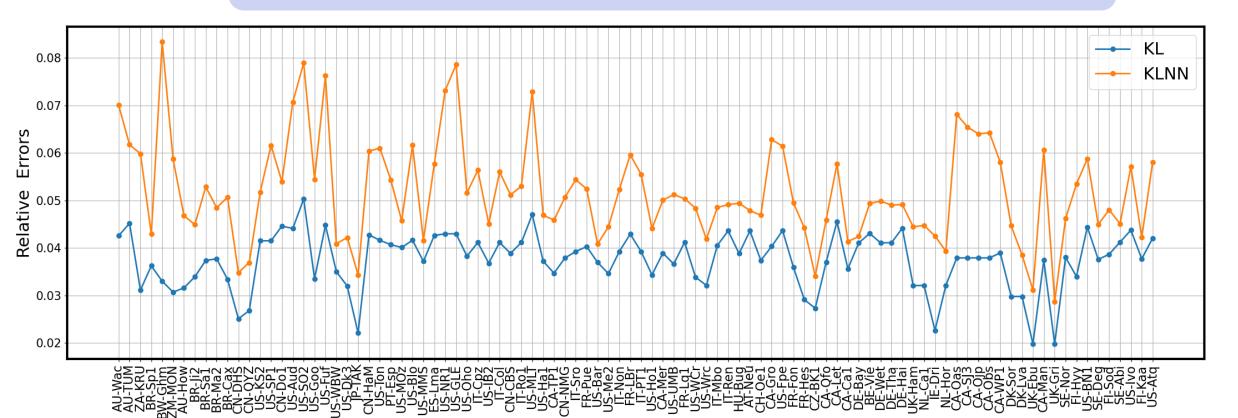


KL+NN a single training sample approximation



KL+NN surrogate performance

Instead of 96x180=**17280** surrogates, we build a single NN surrogate in the reduced, **8**-dimensional latent space

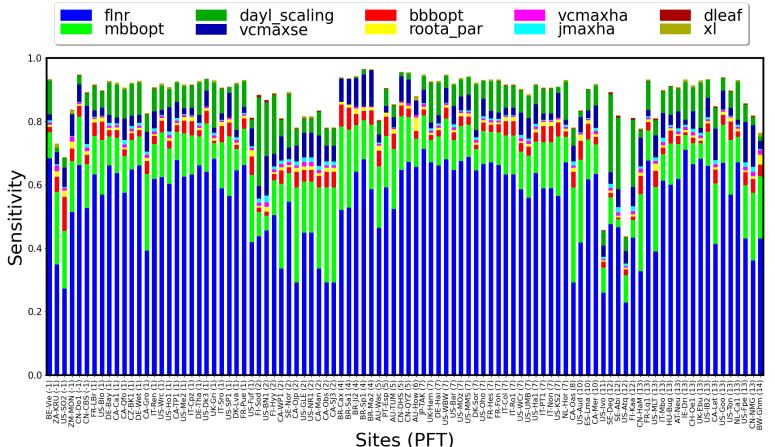


PC vs NN comparison

96 temporal surrogates with each 180 outputs

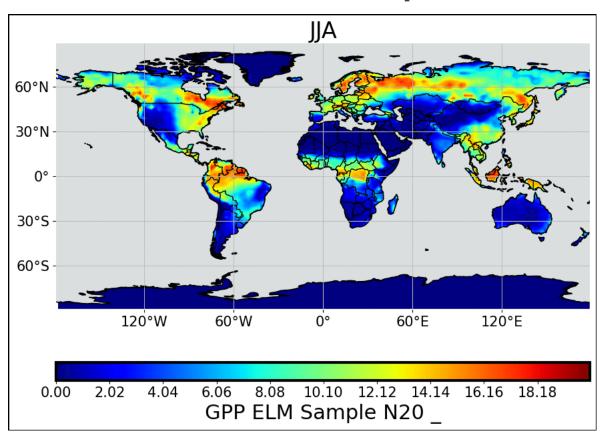
Single spatio-temporal surrogate with 96x180 outputs

Sensitivity at 96 FLUXNET sites: RuBisCO leaf fraction is the most impactful parameter

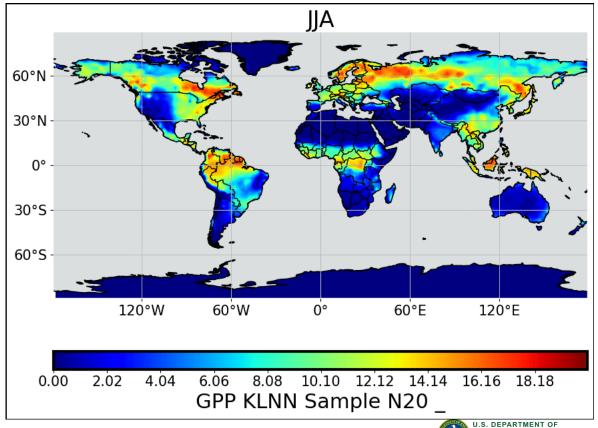


Dimensionality reduction from 4000 cells x 4 seasons = **16000** to **11**-dimensional latent space

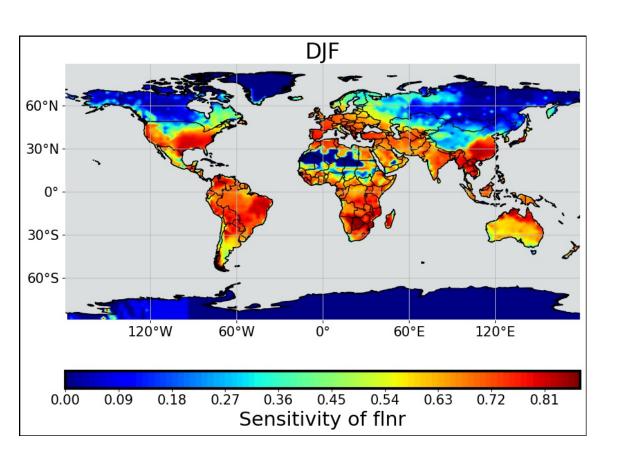
ELM Model Samples

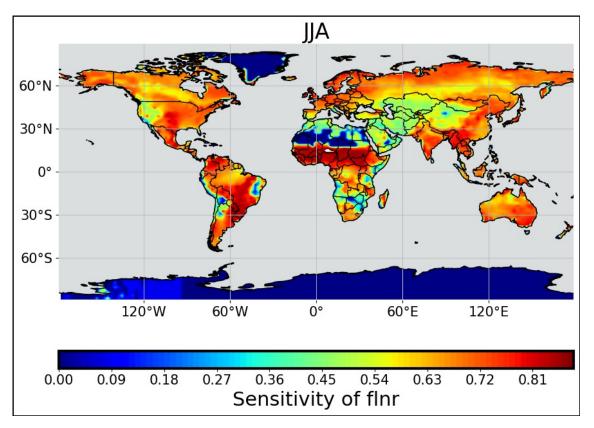


KLNN Surrogate Samples



fLNR sensitivity across the globe



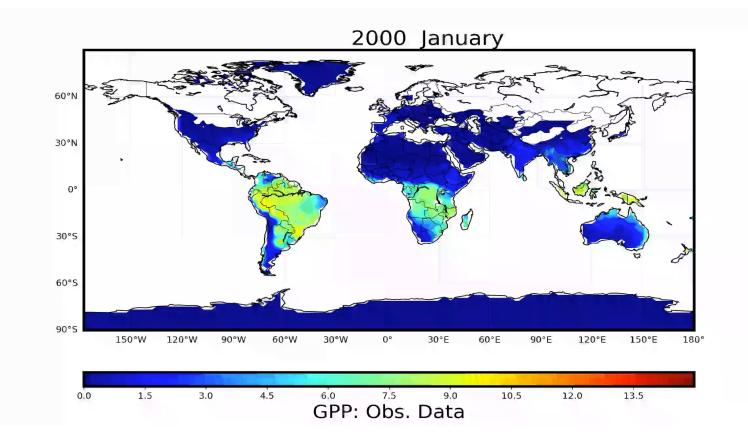


Surrogate-enabled Bayesian calibration

Reference Data

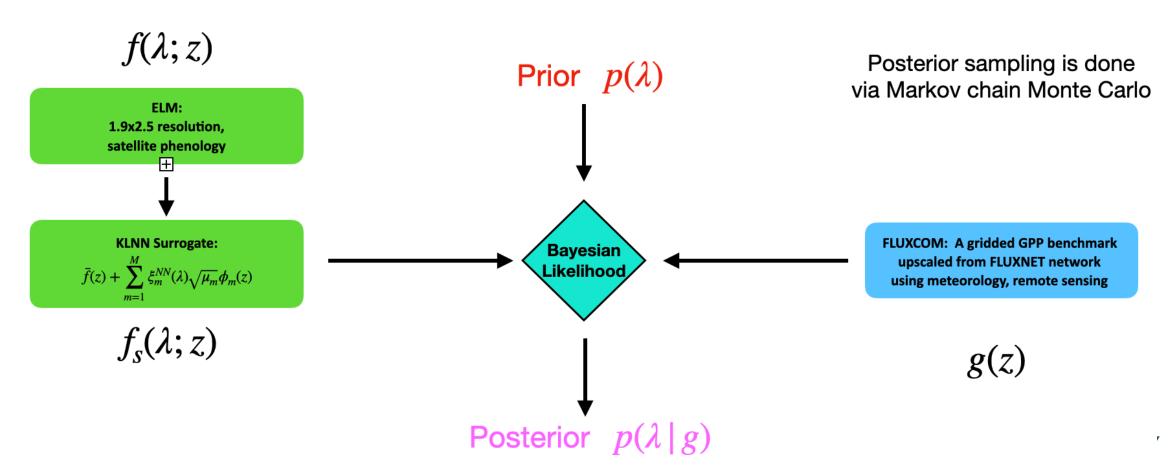
FLUXCOM: A gridded GPP benchmark upscaled from FLUXNET network using meteorology, remote sensing

https://www.fluxcom.org/



Bayes' formula

$$p(\lambda \mid g) \propto p(g \mid \lambda) p(\lambda)$$



Bayesian Likelihood is constructed in the reduced space

Bayes' formula

$$p(\lambda|g) \propto p(g|\lambda)p(\lambda)$$

KLNN surrogate:

$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m^{NN}(\lambda) \sqrt{\mu_m} \phi_m(z)$$

Project observed data to the KL eigenspace:

$$g(z) \approx \overline{f}(z) + \sum_{m=1}^{M} \eta_m \sqrt{\mu_m} \phi_m(z)$$

Pointwise likelihood (naïve):

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{i=1}^N \frac{(g(z_i) - f(\lambda; z_i))^2}{2\sigma_i^2}\right)$$

Reduced likelihood:

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{m=1}^{M} \frac{(\eta_m - \xi_m^{NN}(\lambda))^2}{2\sigma^2}\right)$$

Eigenfeatures ξ_m 's are uncorrelated, zero-mean, unit variance, hence iid gaussian likelihood is a much better assumption in the reduced space.

Likelihood in the reduced space is still Gaussian, but MVN

KLNN surrogate:

$$f(\lambda;z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m^{NN}(\lambda) \sqrt{\mu_m} \phi_m(z) \qquad g(z) \approx \overline{f}(z) + \sum_{m=1}^{M} \eta_m \sqrt{\mu_m} \phi_m(z)$$

Project observed data to the KL eigenspace:

$$g(z) \approx \overline{f}(z) + \sum_{m=1}^{M} \eta_m \sqrt{\mu_m} \phi_m(z)$$

Pointwise likelihood (old):

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{i=1}^N \frac{(g(z_i) - f(\lambda; z_i))^2}{2\sigma_i^2}\right) \longrightarrow g(z_i) = f(\lambda; z_i) + \sigma_i \epsilon_i$$

Data model (old): i.i.d. Normal

$$g(z_i) = f(\lambda; z_i) + \sigma_i \epsilon_i$$

Latent-space likelihood (new):

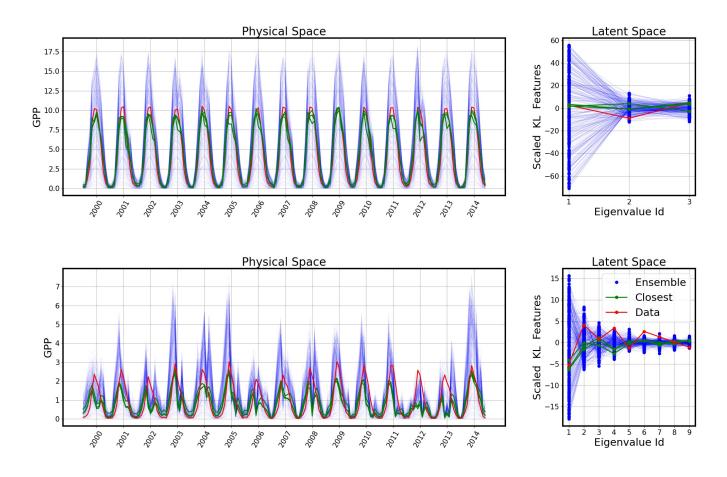
$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{m=1}^{M} \frac{(\eta_m - \xi_m^{NN}(\lambda))^2}{2\sigma^2}\right) \qquad \longrightarrow \qquad \eta_m = \xi_m^{NN}(\lambda) + \sigma \tilde{\epsilon}_m$$

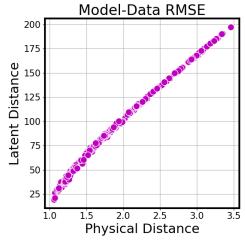
Data model (new): MVN (physics-based)

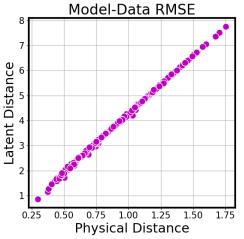
$$\eta_m = \xi_m^{NN}(\lambda) + \sigma \tilde{\epsilon}_m$$

$$g(z_i) = f(\lambda; z_i) + \sum_{m=1}^{M} \epsilon_m \sqrt{\mu_m} \phi_m(z_i)$$

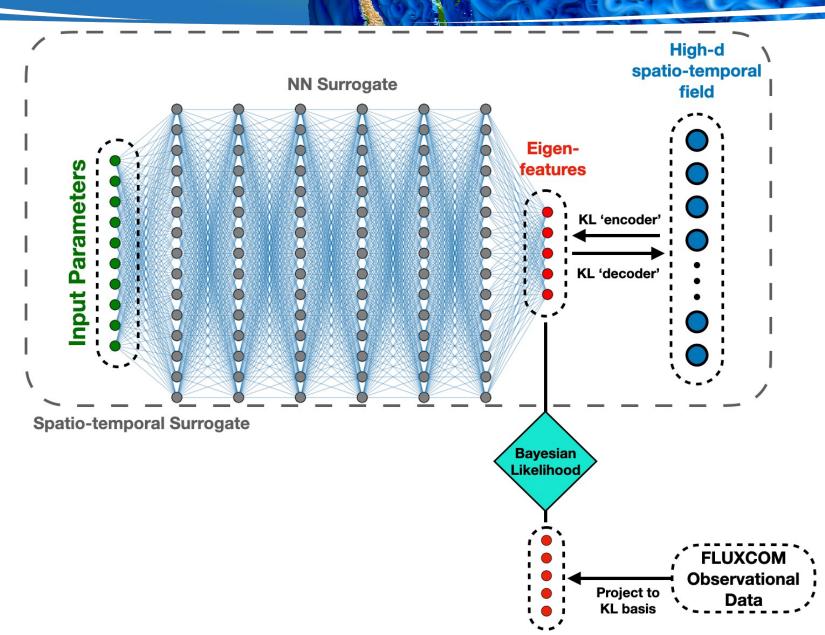
Latent space distance is well-correlated with the physical distance between model and data





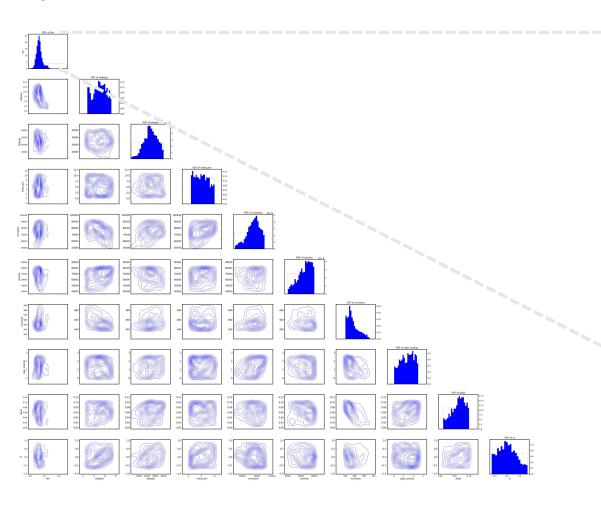


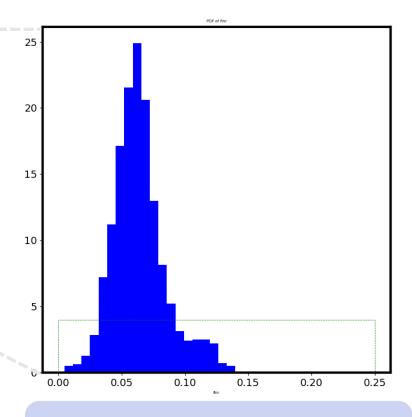
US-GLE



Surrogate-enabled calibration workflow incorporates both forward and inverse UQ tasks

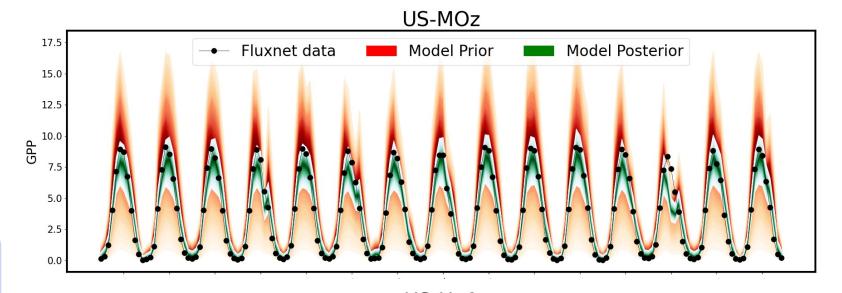
Bayesian calibration enabled by KLNN surrogate

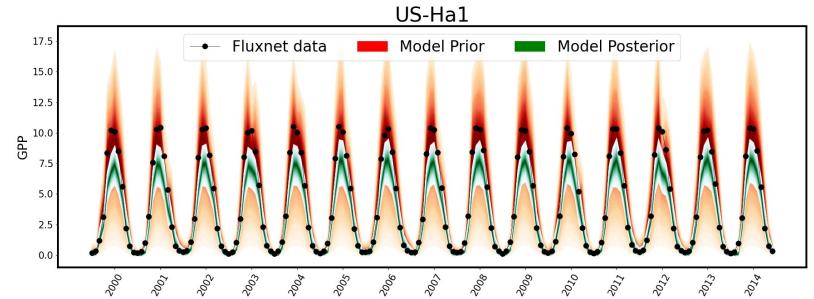




RuBisCO leaf fraction (**fLNR**) is the most constrained parameter

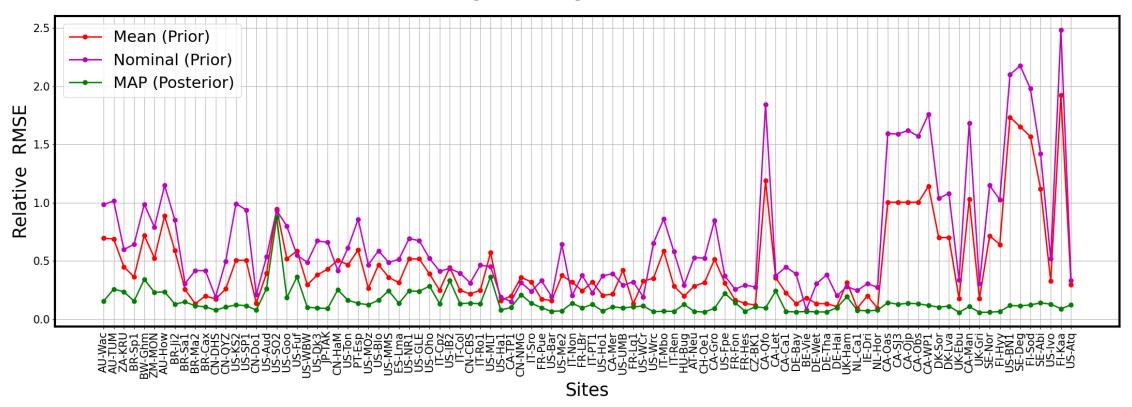
Time evolution of GPP at select FLUXNET sites



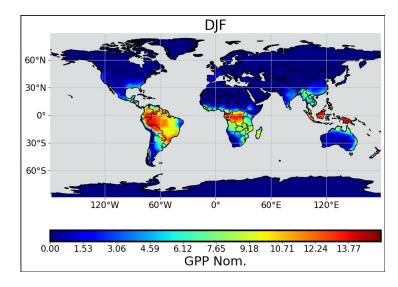


Calibration brings model prediction closer to reference data

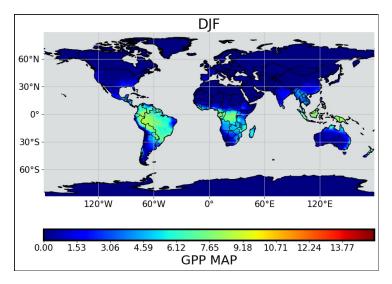
Site-specific parameters



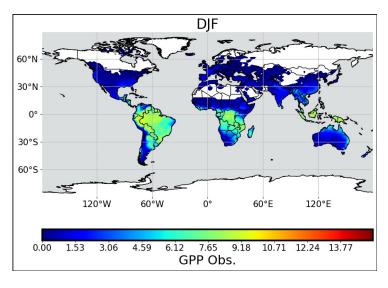
Nominal parameter (prior)

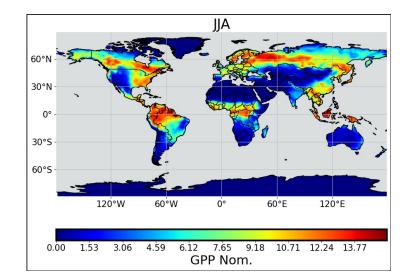


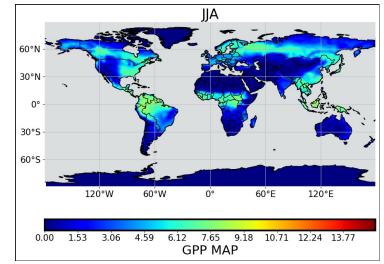
Max a posteriori (MAP)

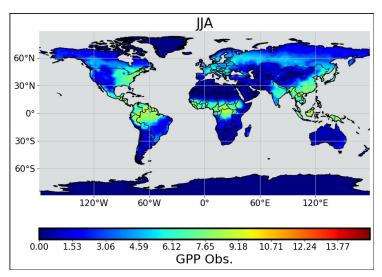


Reference data





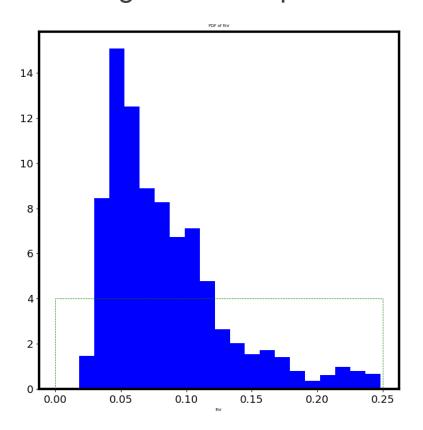




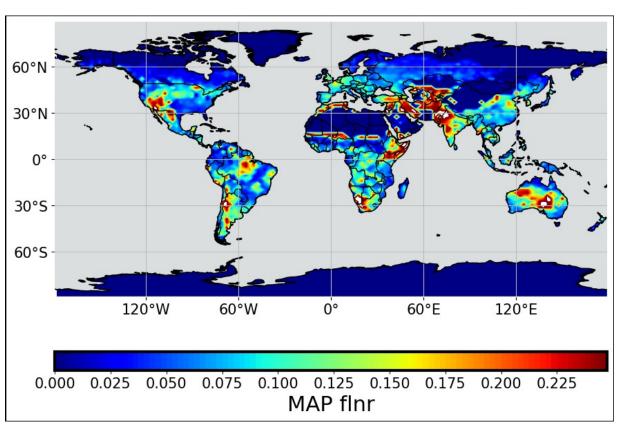
Two calibration regimes

One global surrogate

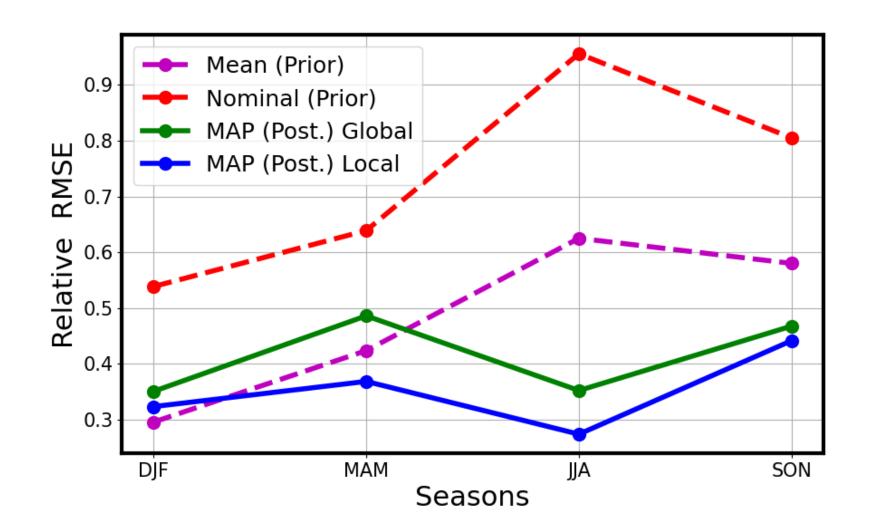
Fixed global fLNR parameter



One surrogate per grid cell Local fLNR parameter



Localized calibration works slightly better



Summary

- Karhunen-Loève (KL) decomposition reduces the spatio-temporal output dimensionality, taking advantage of correlations over space and time.
- Neural network (NN) surrogate in the reduced eigenspace leads to a spatio-temporal KLNN surrogate that is a small fraction of ELM cost.
- KLNN surrogate enables sampling based global sensitivity analysis and Bayesian calibration performed in the eigenspace.

Ongoing work:

- Potential PFT-dependent reparameterization to improve model's ability to match reference data.
- Calibration with embedded model discrepancy to avoid overfitting.

Additional Material

KL truncation relies on variance retention

$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$$

$$Var[f(z)] = \sum_{m=1}^{M} \mu_m \phi^2_m(z)$$

$$Var[f] = \sum_{m=1}^{M} \mu_m$$

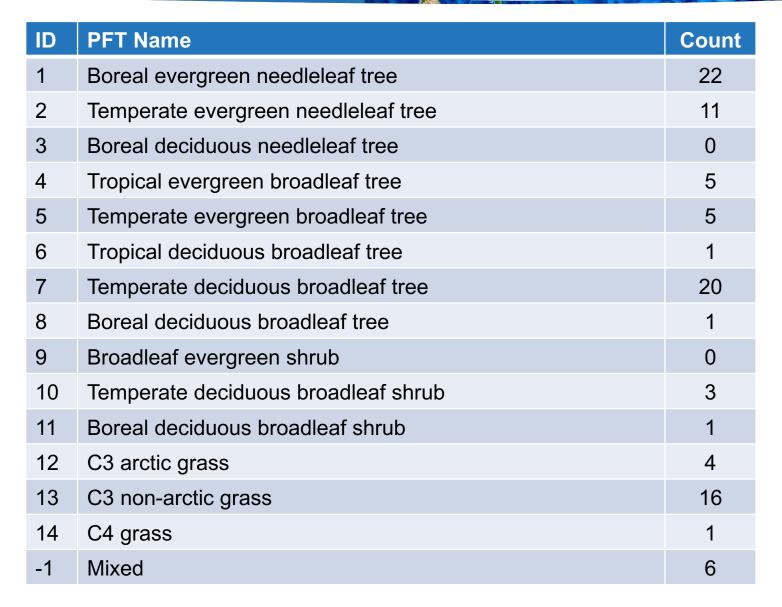
$$M = \operatorname{argmin}_{M'} \frac{\sum_{m=1}^{M'} \mu_m}{\sum_{m=1}^{\infty} \mu_m} > 0.99$$

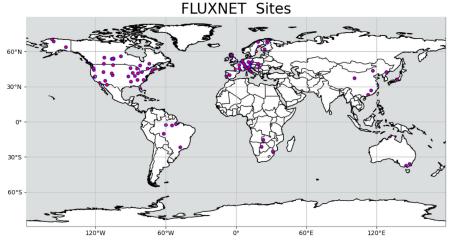
Polynomial Chaos intro

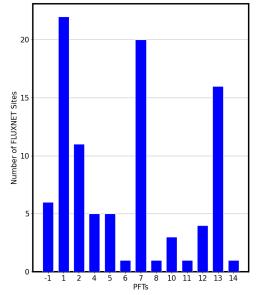
- Our traditional tool for uncertainty representation and propagation
- Random variables represented as polynomial expansion of standard random variables, such as gaussian or uniform $\xi = \sum_{k=1}^K c_k \, \psi_k(\eta)$
- Convenient for uncertainty propagation

$$f(\xi) = \sum_{k=0}^{K} f_k \, \psi_k(\eta)$$

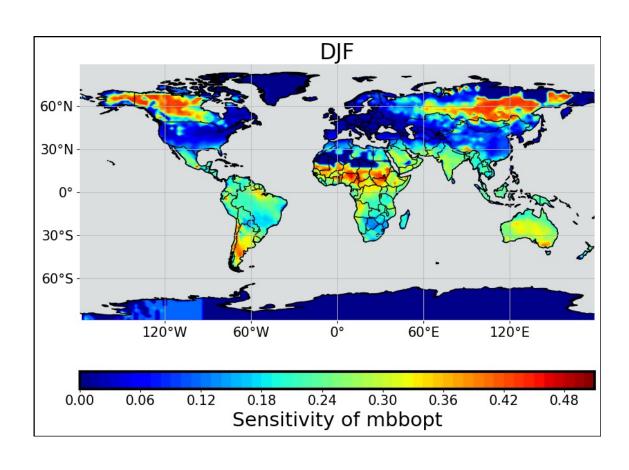
- Moment estimation
- Global Sensitivity Analysis (a.k.a. Sobol indices or variance-based decomposition)

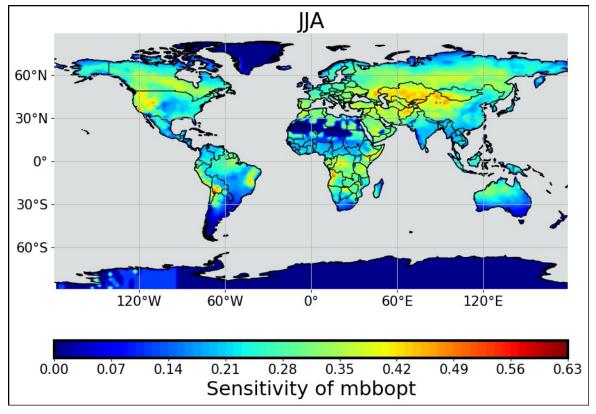






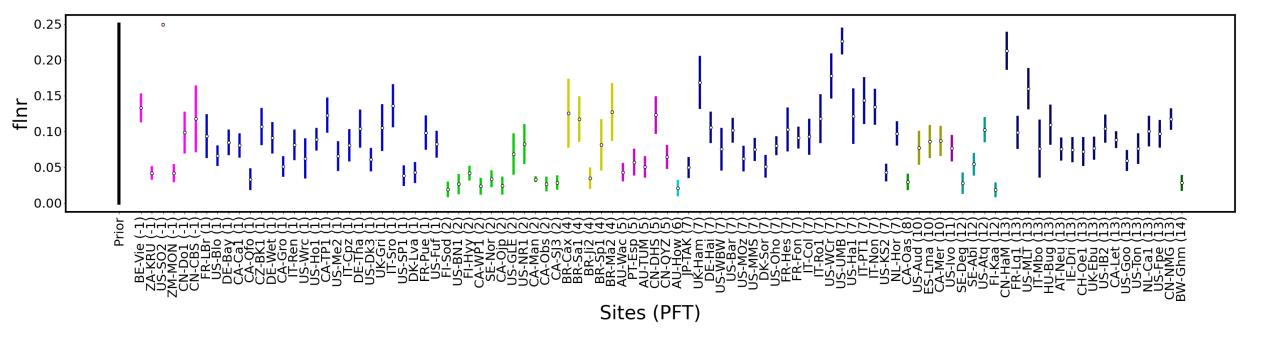
mbbopt sensitivity across the globe





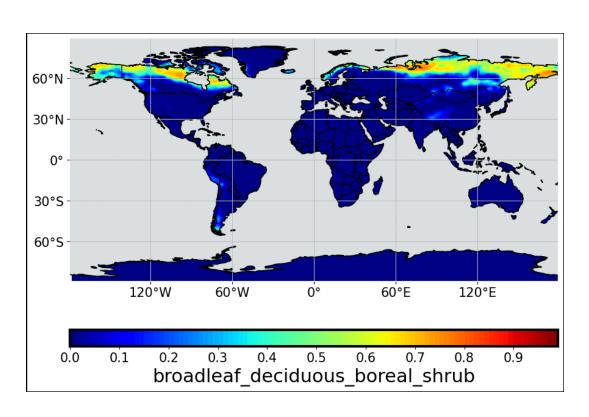
Local (site-specific) fLNR posterior PDFs

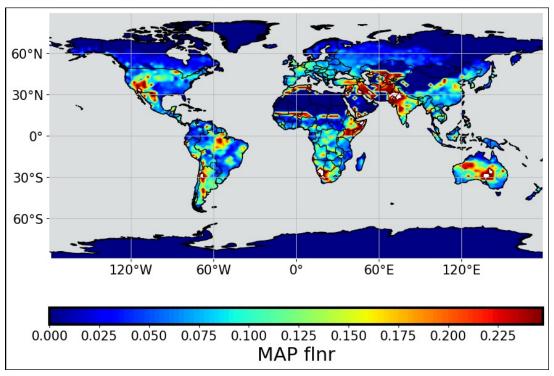
Grouped by PFTs



Correlate PFT fractions globally with best fLNR values

PFT Fractions for all PFTs





Correlate PFT fractions globally with best fLNR values

