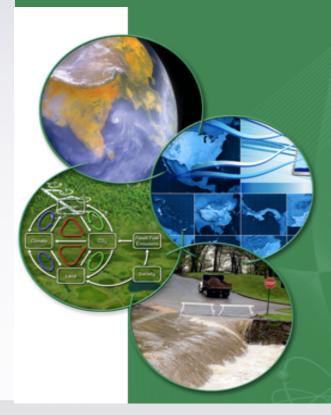


Quantifying the Impacts of Parametric Uncertainty on Biogeochemistry in the ACME Land Model

Khachik Sargsyan, Daniel M. Ricciuto

June 7, 2016 ACME All-Hands, Land Group

CLIMATE CHANGE SCIENCE INSTITUTE

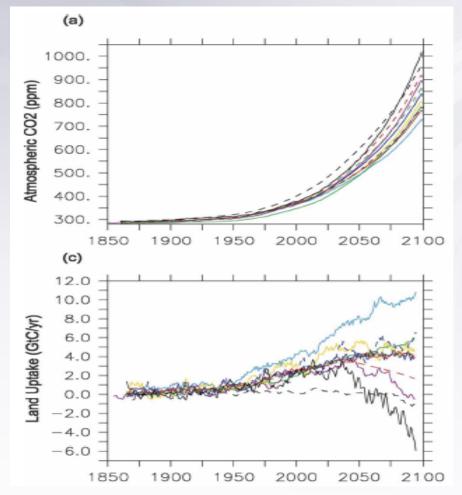


Overview and motivation

- Traditionally, uncertainty has been estimated using multi-model comparisons
- Large uncertainties about future carbon flux

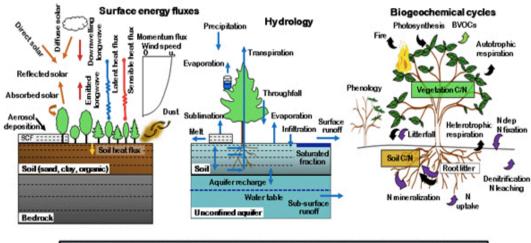
Challenges:

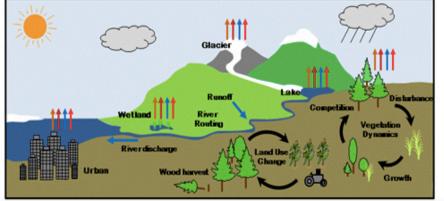
- We need to characterize withinmodel uncertainties better
- Understand which parameters are the key drivers of uncertainty for given outputs
- Improve model predictive skill using calibration
- Need for formal UQ methods



Friedlingstein et al 2014

Overview and motivation





- ALM is an increasingly complex model with many processes
- Slow evaluation time, poor scaling
- Large ensembles are needed for UQ
- Surrogate models can increase the efficiency of sensitivity analysis and calibration

Major goal: create a surrogate model

Surrogate model is a "good-enough" approximation of the full model over a range of parameter variability.

- ... otherwise called
- Metamodels
- Response surfaces
- Emulators
- Low-fidelity model

Black Box Y = f(X)

Surrogate models are needed for computationally intensive tasks:

- Parameter estimation
- Optimization
- Experimental/computational design
- Forward uncertainty propagation

 $f(X) \approx f_{surr}(X)$

Polynomial Chaos is the main workhorse

PC provides convenient means of representing model inputs and outputs in a probabilistic way.

$$X = \sum_{k=0}^{P-1} a_k \Psi_k(\xi) \qquad Y = f(X) \qquad Y = \sum_{k=0}^{P-1} c_k \Psi_k(\xi)$$

are standard variables (uniform, normal)

 $\Psi_k(\cdot)$ are standard orthogonal polynomials (Legendre, Hermite)

- Think of Fourier-type expansions, only w.r.t. polynomials.
- Uncertain inputs X and outputs Y are represented via vectors of PC modes a_k and c_k

Polynomial Chaos Surrogate, a.k.a. fit the function

Simplest scenario: parameters are given up to expert-defined ranges

$$X_i \in [a_i, b_i]$$
 $X_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} \xi$

Now ξ_i is Uniform[-1,1], and X_i is a Legendre-Uniform PC of 1-st order, surrogate is simply a polynomial fit

[Probabilistic interpretation remains: inputs X are uniform random variables.]

Polynomial surrogate construction

$$Y = f(X)$$
 \approx $g_c(X) = \sum_{k=0}^{P-1} c_k L_k(X)$

- Non-intrusive (black-box) setting: f(X) is a Land Model output Qol
- Evaluate at training points $y_i = f(X_i)$, for i=1, ..., N.
- Compute c_k 's using least-squares minimization with measurement matrix $G_{ik} = L_k(x_i)$

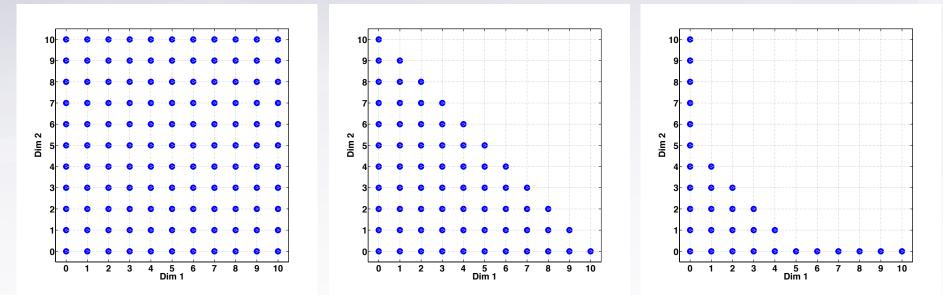
$$\min_{c} \sum_{i=1}^{N} [f(X_i) - g_c(X_i)]^2 = \min_{c} || f - Gc ||$$

• **Bayesian inference:** more flexible, provides errorbars on c

Multivariate polynomial basis

$$L_k(X_1, X_2, ..., X_d) = L_{p_1}(X_1)L_{p_2}(X_2) \cdots L_{p_d}(X_d)$$

Key challenge: how to truncate polynomial expansion? in high-dimensional cases, often N<P.

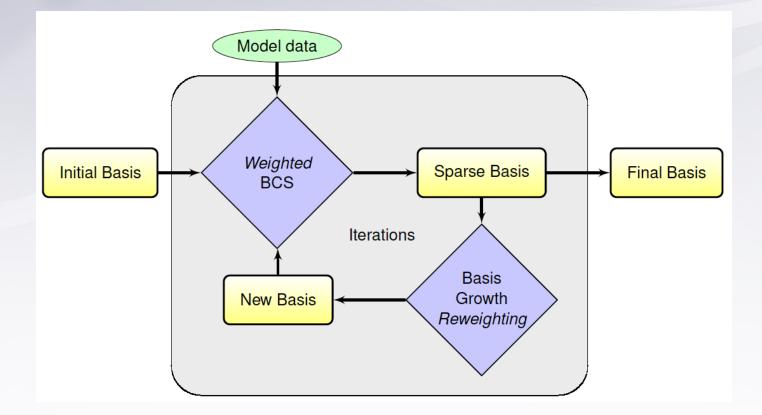


(Bayesian) Compressed Sensing helps find the sparsest signal, *i.e.* selects as few polynomial terms as possible.

 $g_c(X) = \sum_{k=0}^{r-1} c_k L_k(X)$

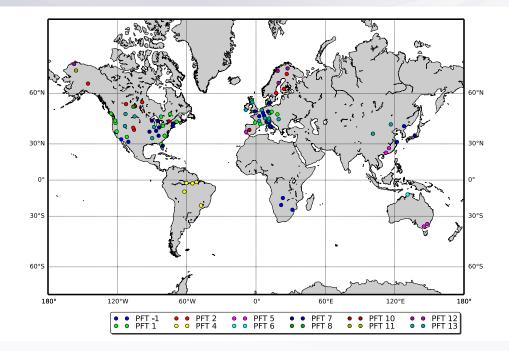
Major UQ challenge: High-dimensionality

... so we start from a smaller basis and iteratively grow it [Sargsyan et al., 2014].



FLUXNET sensitivity analysis: ALM-CN

- 96 FLUXNET sites covering major biomes and plant functional types
- 68 input parameters varied over uniform prior ranges
- 3000 simulations on Titan
- Surrogate construction and sensitivity analysis with Bayesian Compressive Sensing (Sargsyan et al., 2014)
- Site-specific PFT, but reanalysis forcings/soil properties

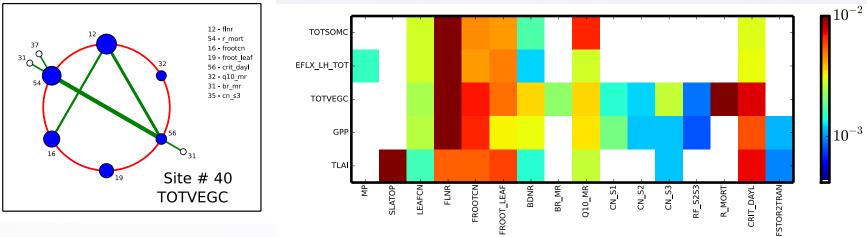


- Ensemble of 3000 runs in 68-dimensions is extremely scarce information
- BCS leads to polynomial fits with only 200 terms
- Surrogate is not too accurate, but sensitivity analysis is meaningful

Output uncertainty decomposition

- ... otherwise called
- Global Sensitivity Analysis (GSA)
- Sobol sensitivity indices
- Variance-based decomposition
- similar to ANOVA-decomposition

PC surrogate gives easy access for fractional variance contributions to output uncertainties.



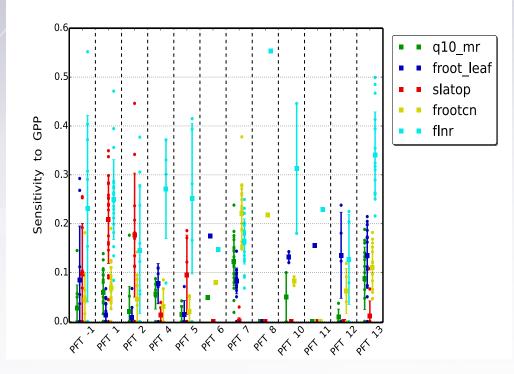
Parameter down-selection (68 to 10-20)

Site #40, Harvard Forest, US

Forward UQ Summary

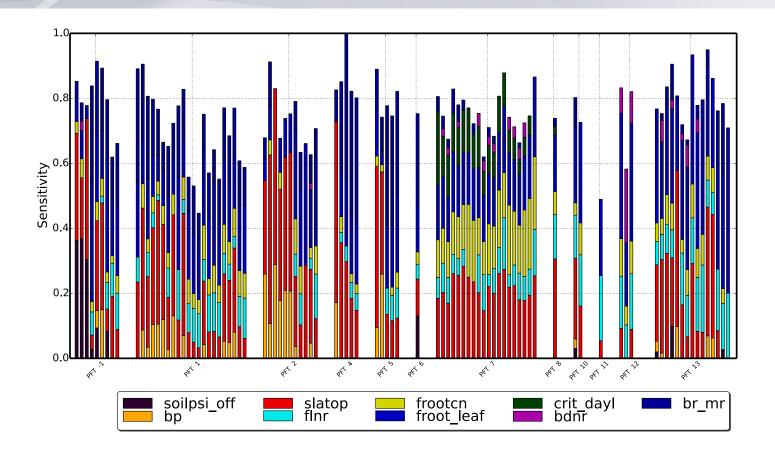
- Global parametric surrogate is not very accurate (~30%), but that is as good as one can hope with a 65-d space and 3K runs
- It is still good enough to extract the major players,
 i.e. the highest main and joint sensitivities
- Paper in preparation on the Weighted Iterative Bayesian Compressive Sensing + Multisite Surrogate/Sensitivity Analsys
- For calibration purposes, one needs to have adaptive, localized surrogates that are more accurate
- Multi-output (site, QoI) forward UQ implemented in python scripts employing UQTk (<u>www.sandia.gov/uqtoolkit</u>)
- Git repository ACME/Uncertainty-Quantification
- Hackathon this Friday!

Sensitivity analysis: Interpreting the results



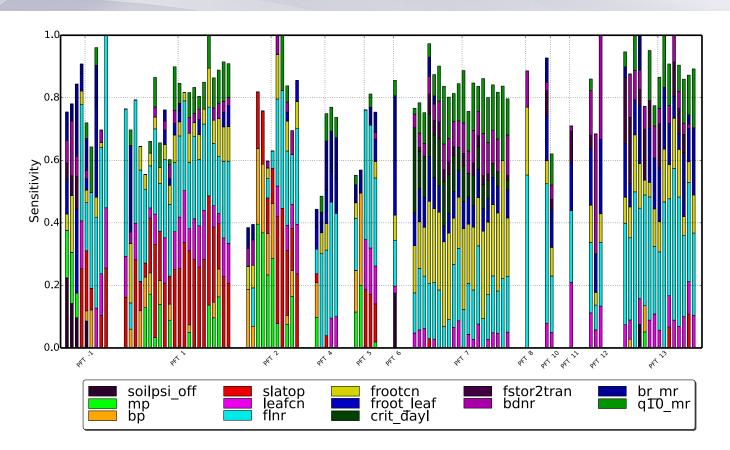
- Some parameters are sensitive everywhere (flnr)
- Maintenance respiration base rate (br_mr) is critically important in tropical rainforests but not in other ecosystems.
- Relative consistence within PFTs
- Can provide guidance about where specific measurements or data are more valuable
- Reduction of parameter space for optimization

Multisite analysis



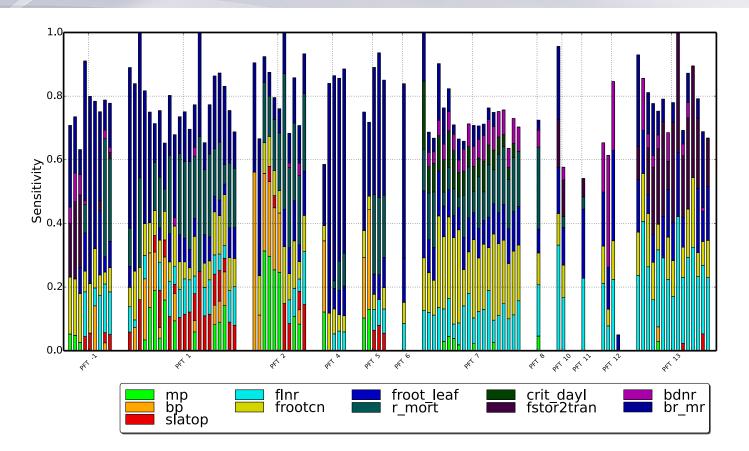
TLAI

Multisite analysis



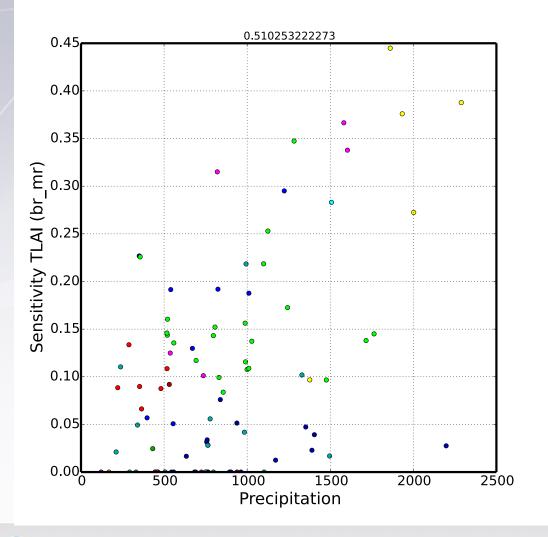
GPP

Multisite analysis



TOTVEGC

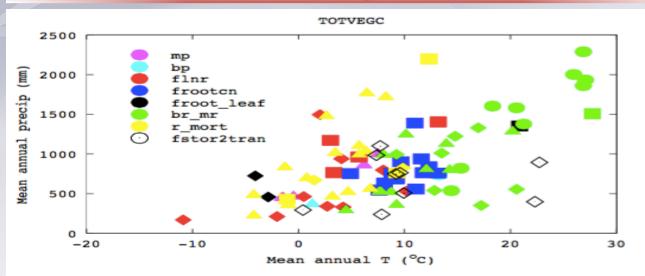
Correlations with climate variables

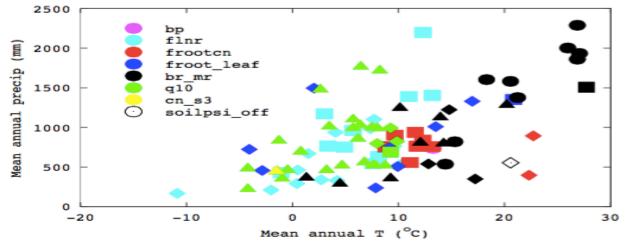


erated Climate Modeling

- The sensitivity of some parameters is correlated with climate variables
- Illustrates how some mechanisms are relatively more important in specific conditions
- Example: sensitivity of maintenance respiration base rate to mean annual precipitation

Parameter sensitivity in climate space





UQ, optimization and benchmarking

- Sensitivity analysis: Determining which model parameters are sensitive for given Qols, timescales
 - Examining coherence of sensitivity within and among PFTs
 - Using trait databases to guide model experiments
 - Dependence on model structure (testing model versions)
- Ensemble benchmarking
 - Consider parameter, driver, and structural uncertainty (compare PDFs of scores rather than individual numbers)
- Model calibration: Improving predictions
 - Multivariate optimization, use of emergent constraints
 - Independent data must be reserved for validation/benchmarking
 - Complex LSMs require sophisticated approaches
 - Opportunity for standardization of workflows

Accelerated Climate Modeling for Energy

