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•  Traditionally, uncertainty has been 
estimated using multi-model 
comparisons 

•  Large uncertainties about future 
carbon flux 

Challenges: 
•  We need to characterize within-

model uncertainties better 
•  Understand which parameters are 

the key drivers of uncertainty for 
given outputs 

•  Improve model predictive skill using 
calibration 

•  Need for formal UQ methods  

 
Friedlingstein	et	al	2014	

Overview and motivation 



Overview and motivation 

•  ALM is an increasingly 
complex model with 
many processes 

•  Slow evaluation time, 
poor scaling 

•  Large ensembles are 
needed for UQ  

•  Surrogate models can 
increase the efficiency 
of sensitivity analysis 
and calibration 



Major goal: create a surrogate model 

Surrogate	models	are	needed	for	computa2onally	intensive	tasks:	
	
•  Parameter	es2ma2on	
•  Op2miza2on	
•  Experimental/computa2onal	design		
•  Forward	uncertainty	propaga1on	

…	otherwise	called	
•  Metamodels	
•  Response	surfaces	
•  Emulators	
•  Low-fidelity	model	

Surrogate	model	is	a	“good-enough”	approxima2on	of	the	full	model		
over	a	range	of	parameter	variability.	

Y = f (X)

f (X) ≈ fsurr (X)

Black	Box	



Polynomial Chaos is the main workhorse 

PC	provides	convenient	means	of	represen2ng	model	inputs	and	outputs		
in	a	probabilis2c	way.		

X = ak
k=0

P−1

∑ Ψ k (ξ ) Y = ckΨ k (ξ )
k=0

P−1

∑Y = f (X)

ξ are	standard	variables	(uniform,	normal)	

Ψ k (⋅) are	standard	orthogonal	polynomials	(Legendre,	Hermite)	

•  Think	of	Fourier-type	expansions,	only	w.r.t.	polynomials.	
•  Uncertain	inputs	X	and	outputs	Y	are	represented	via	vectors	of	PC	modes	ak	and	ck	



Polynomial Chaos Surrogate,  
a.k.a. fit the function 

Simplest	scenario:	parameters	are	given	up	to	expert-defined	ranges	

ξi

Y = ckLk (X)
k=0

P−1

∑Y = f (X)

Xi ∈ [ai,bi ] Xi =
ai+bi
2 + bi−ai

2 ξ i

Now		 is	Uniform[-1,1],		
and	Xi	is	a	Legendre-Uniform	PC	of	1-st	order,	

	surrogate	is	simply	a	polynomial	fit	

≈	
[Probabilis2c	interpreta2on	remains:	inputs	X	are	uniform	random	variables.]	



Polynomial surrogate construction 

gc (X) = ckLk (X)
k=0

P−1

∑Y = f (X) ≈	
•  Non-intrusive	(black-box)	seXng:	f(X) is	a	Land	Model	output	QoI	
•  Evaluate	at	training	points	yi=f( Xi ), for	i=1, …, N. 
•  Compute	ck’s	using	least-squares	minimiza2on		

		with	measurement	matrix		

min
c

i=1

N

∑ [ f (Xi )− gc (Xi )]
2 =min

c
|| f −Gc ||

•  Bayesian	inference:	more	flexible,	provides	errorbars	on	c 

Gik = Lk (xi )



Multivariate polynomial basis 

Key	challenge:	how	to	truncate	polynomial	expansion?		
	in	high-dimensional	cases,	o`en	N<P.	
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(Bayesian)	Compressed	Sensing	helps	find	the	sparsest	signal,		
i.e.	selects	as	few	polynomial	terms	as	possible.	

Lk (X1,X2,...,Xd ) = Lp1
(X1)Lp2

(X2 )!Lpd
(Xd )gc (X) = ckLk (X)

k=0

P−1

∑



Major UQ challenge: High-dimensionality 

…	so	we	start	from	a	smaller	basis	and	itera2vely	grow	it	[Sargsyan	et	al.,	2014].	



FLUXNET sensitivity analysis: ALM-CN 
 •  96	FLUXNET	sites	covering	major	biomes	and	plant	func2onal	types	

•  68	input	parameters	varied	over	uniform	prior	ranges	
•  3000	simula2ons	on	Titan		
•  Surrogate	construc2on	and		
			sensi2vity	analysis	with		
			Bayesian	Compressive	Sensing	

	(Sargsyan	et	al.,	2014)	
•  Site-specific	PFT,	but		
reanalysis	forcings/soil	proper2es	

•  Ensemble	of	3000	runs	in	68-dimensions	is	extremely	scarce	informa2on	
•  BCS	leads	to	polynomial	fits	with	only	200	terms	
•  Surrogate	is	not	too	accurate,	but	sensi2vity	analysis	is	meaningful	



Output uncertainty decomposition 
…	otherwise	called	
•  Global	Sensi2vity	Analysis	(GSA)	
•  Sobol	sensi2vity	indices	
•  Variance-based	decomposi2on	
•  similar	to	ANOVA-decomposi2on	

PC	surrogate	gives	easy	access	for	
frac5onal	variance	contribu5ons	to	

output	uncertain5es.	

Parameter	down-selec2on	(68	to	10-20)	

Site	#40,	Harvard	Forest,	US	



Forward UQ Summary 
•  Global	parametric	surrogate	is	not	very	accurate	(~30%),	but	

	that	is	as	good	as	one	can	hope	with	a	65-d	space	and	3K	runs	

•  It	is	s2ll	good	enough	to	extract	the	major	players,		
	i.e.	the	highest	main	and	joint	sensi2vi2es		

	
•  Paper	in	prepara2on	on	the	Weighted	Itera2ve	Bayesian	

Compressive	Sensing	+	Mul2site	Surrogate/Sensi2vity	Analsys	
	
•  For	calibra2on	purposes,	one	needs	to	have	adap2ve,	localized	

surrogates	that	are	more	accurate	
	
•  Mul2-output	(site,	QoI)	forward	UQ	implemented	in	python	scripts	

employing	UQTk	(www.sandia.gov/uqtoolkit)	
•  Git	repository	ACME/Uncertainty-Quan2fica2on	
•  Hackathon	this	Friday!	
	
	
	



Sensitivity analysis: 
Interpreting the results 

•  Some	parameters	are	sensi2ve	
everywhere	(flnr)	

•  Maintenance	respira2on	base	rate	
(br_mr)	is	cri2cally	important	in	
tropical	rainforests	but	not	in	other	
ecosystems.			

•  Rela2ve	consistence	within	PFTs	

•  Can	provide	guidance	about	where	
specific	measurements	or	data	are	
more	valuable	

•  Reduc2on	of	parameter	space	for	
op2miza2on	

	



Multisite analysis 

TLAI	



Multisite analysis 

GPP	



Multisite analysis 

TOTVEGC	



Correlations with climate variables 
•  The	sensi2vity	of	some	

parameters	is	correlated	with	
climate	variables	

•  Illustrates	how	some	
mechanisms	are	rela2vely	
more	important	in	specific	
condi2ons	

•  Example:		sensi2vity	of	
maintenance	respira2on	base	
rate	to	mean	annual	
precipita2on	



Parameter sensitivity in climate space 



UQ, optimization and benchmarking 
•  Sensitivity analysis:  Determining which model parameters 

are sensitive for given QoIs, timescales 
–  Examining coherence of sensitivity within and among PFTs 
–  Using trait databases to guide model experiments 
–  Dependence on model structure (testing model versions) 

•  Ensemble benchmarking 
–  Consider parameter, driver, and structural uncertainty (compare 

PDFs of scores rather than individual numbers) 

•  Model calibration:  Improving predictions 
–  Multivariate optimization, use of emergent constraints 
–  Independent data must be reserved for validation/benchmarking 
–  Complex LSMs require sophisticated approaches 
–  Opportunity for standardization of workflows 


