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OUTLINE

• Surrogates needed for complex models

• Polynomial Chaos (PC) surrogates do well with uncertain inputs

• Bayesian regression provide results with uncertainty certificate

• Compressive sensing ideas deal with high-dimensionality
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Surrogate construction: scope and challenges

Construct surrogate for a complex model f (λ) to enable

• Global sensitivity analysis

• Optimization

• Forward uncertainty propagation

• Input parameter calibration

• · · ·

• Computationally expensive model simulations, data sparsity

• Need to build accurate surrogates with as few

training runs as possible

• High-dimensional input space

• Too many samples needed to cover the space

• Too many terms in the polynomial expansion
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Polynomial Chaos surrogate

• Build/presume PC for input parameter λ

λ(x) =

K−1∑

k=0

akΨk(x)
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Polynomial Chaos surrogate

• Build/presume PC for input parameter λ

λ(x) =

K−1∑

k=0

akΨk(x)

• E.g., gaussian with known moments µi, σi,

λi = µi + σixi
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Polynomial Chaos surrogate

• Build/presume PC for input parameter λ

λ(x) =

K−1∑

k=0

akΨk(x)

• Input parameters are represented via their cumulative distribution

function F(·), such that, with xi ∼ Uniform[−1, 1]

λi = F−1
λi

(
xi + 1

2

)

, for i = 1, 2, . . . , d.
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Polynomial Chaos surrogate

• Build/presume PC for input parameter λ

λ(x) =

K−1∑

k=0

akΨk(x)

• If input parameters are uniform in [ai, bi], then

λi =
ai + bi

2
+

bi − ai

2
xi
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Polynomial Chaos surrogate

• Build/presume PC for input parameter λ

λ(x) =
K−1∑

k=0

akΨk(x)

• If input parameters are uniform in [ai, bi], then

λi =
ai + bi

2
+

bi − ai

2
xi

• Forward function f (·), output u

u = f (λ(x)) u =

K−1∑

k=0

ckΨk(x) ≡ g(x)

• Global sensitivity information for free

- Sobol indices, variance-based decomposition.
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Alternative methods to obtain PC coefficients

u ≃
K−1∑

k=0

ckΨk(x)

• Projection ck =
〈u(x)Ψk(x)〉

〈Ψ2
k
(x)〉

The integral 〈u(x)Ψk(x)〉 =
∫

u(x)Ψk(x)dx can be estimated by

• Monte-Carlo

1

N

N∑

j=1

u(xj)Ψk(xj) many(!) random samples

• Quadrature

Q
∑

j=1

u(xj)Ψk(xj)wj
samples at quadrature

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 5 / 20



Alternative methods to obtain PC coefficients

u ≃
K−1∑

k=0

ckΨk(x)

• Projection ck =
〈u(x)Ψk(x)〉

〈Ψ2
k
(x)〉

The integral 〈u(x)Ψk(x)〉 =
∫

u(x)Ψk(x)dx can be estimated by

• Monte-Carlo

1

N

N∑

j=1

u(xj)Ψk(xj) many(!) random samples

• Quadrature

Q
∑

j=1

u(xj)Ψk(xj)wj
samples at quadrature

• Bayesian regression

P(ck|u(xj)) ∝ P(u(xj)|ck)P(ck)
any (number of) samples
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N
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u(xj)Ψk(xj) many(!) random samples

• Quadrature

Q
∑

j=1

u(xj)Ψk(xj)wj
samples at quadrature

• Bayesian regression

P(c|D)
︸ ︷︷ ︸

Posterior

∝ P(D|c)
︸ ︷︷ ︸

Likelihood

P(c)
︸︷︷︸

Prior

any (number of) samples

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 5 / 20



Bayesian inference of PC surrogate: high-d, low-data regime

y = u(x) ≈∑K−1
k=0 ckΨk(x)

Ψk(x1, x2, ..., xd) = ψk1
(x1)ψk2

(x2) · · ·ψkd
(xd)

• Issues:

• how to properly choose
the basis set?
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• need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

• Discover the underlying low-d structure in the model

• get help from the machine learning community
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In a different language....

• N training data points (xn, un) and K basis terms Ψk(·)
• Projection matrix PN×K with Pnk = Ψk(xn)

• Find regression weights c = (c0, . . . , cK−1) so that

u ≈ Pc or
un ≈∑k ckΨk(xn)

• The number of polynomial basis terms grows fast; a p-th order,

d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

• For limited data and large basis set (N < K) this is a sparse signal

recovery problem ⇒ need some regularization/constraints.

• Least-squares argminc {||u − Pc||2}

• The ‘sparsest’ argminc {||u − Pc||2 + α||c||0}

• Compressive sensing argminc {||u − Pc||2 + α||c||1}
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• Find regression weights c = (c0, . . . , cK−1) so that
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un ≈∑k ckΨk(xn)

• The number of polynomial basis terms grows fast; a p-th order,

d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

• For limited data and large basis set (N < K) this is a sparse signal

recovery problem ⇒ need some regularization/constraints.

• Least-squares argminc {||u − Pc||2}

• The ‘sparsest’ argminc {||u − Pc||2 + α||c||0}

• Compressive sensing argminc {||u − Pc||2 + α||c||1}
Bayesian Likelihood Prior
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Weighted Bayesian Compressive Sensing

• Dimensionality reduction by using hierarchical priors

p(ck|σ2
k ) =

1√
2πσk

e
− c2

k

2σ2
k p(σ2

k |αk) =
αk

2
e
−αkσ

2
k

2

• Effectively, one obtains Laplace sparsity prior

p(c|α) =

∫
K−1∏

k=0

p(ck|σ2
k)p(σ

2
k |αk)dσ

2
k =

K−1∏

k=0

√
αk

2
e
−√

αk|ck|

• Evidence maximization dictates values for σ2
k , αk, σ

2 and allows exact

Bayesian solution

c ∼ MVN (µ,Σ)

with
µ = σ−2

ΣP
T
u Σ = σ2(PT

P + diag(σ2/σ2
k ))

−1

• KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.
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BCS removes unnecessary basis terms

f (x, y) = cos(x + 4y) f (x, y) = cos(x2 + 4y)
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The square (i, j) represents the (log) spectral coefficient
for the basis term ψi(x)ψj(y).
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Success rate grows with more data and ‘sparser’ model

Consider test function
f (x) =

K−1∑

k=0

ckΨk(x)

where only S coefficients ck are non-zero. Typical setting is

S < N < K
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BCS recovers true PC coefficients with increased

number of measurements
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BCS recovers true PC coefficients with increased

number of measurements
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WBCS recovers true coefficients better
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||c||0 such that u ≈ Pc

Compressive sensing: min||c||1 such that u ≈ Pc

Weighted compressive sensing: min||Wc||1 such that u ≈ Pc
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For sparse signals, u = Pcs, with ||cs||0 = S < K, ideal weights are

W = diag

(
1

|cs
k|

)

[i.e., Wkk = +∞ if cs
k = 0]

In practice, the true signal coefficients are not known, so...
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For sparse signals, u = Pcs, with ||cs||0 = S < K, ideal weights are

W = diag

(
1

|cs
k|

)

[i.e., Wkk = +∞ if cs
k = 0]

In practice, the true signal coefficients are not known, so...

Iterative re-weighting

W(i+1) = diag

(

1

|c(i)k |+ ǫ

)

[ǫ≪ 1 for stability]
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Iterative Bayesian Compressive Sensing (iBCS)

Iterative BCS: We implement an iterative procedure that allows

increasing the order for the relevant basis terms while maintaining the

dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

Initial Basis

Iterations

BCS

Model data

Sparse Basis Final Basis

Basis

GrowthNew Basis
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Iterative Bayesian Compressive Sensing (iBCS)

Combine basis growth and reweighting!

Initial Basis

Iterations

Weighted

BCS

Model data

Sparse Basis Final Basis

Basis

Growth

Reweighting
New Basis
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Basis set growth: simple anisotropic function

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 15 / 20



Basis set growth: ... added outlier term
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Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

Nested computational grid hierarchy

A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU

Involves ∼ 50 input parameters; some dependent

Non-smooth input-output relationship
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Sparse PC surrogate for the Community Land Model

Main effect sensitivities : rank input parameters

Joint sensitivities : most influential input couplings

About 200 polynomial basis terms in the 50-dimensional space

Sparse PC will further be used for

• sampling in a reduced space

• parameter calibration against experimental data
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Summary

Surrogate models are necessary for complex models

• Replace the full model for both forward and inverse UQ

Uncertain inputs

• Polynomial Chaos surrogates well-suited

Limited training dataset

• Bayesian methods handle limited information well

Curse of dimensionality

• The hope is that not too many dimensions matter

• Compressive sensing (CS) ideas ported from machine learning

• We implemented iteratively reweighting Bayesian CS algorithm that

reduces dimensionality and increases order on-the-fly.

Open issues

• Computational design. What is the best sampling strategy?

• Overfitting still present. Cross-validation techniques help.
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Random variables represented by Polynomial Chaos

X ≃
K−1∑

k=0

ckΨk(η)

• η = (η1, · · · , ηd) standard i.i.d. r.v.
Ψk standard polynomials, orthogonal w.r.t. π(η).

Ψk(η1, η2, . . . , ηd) = ψk1
(η1)ψk2

(η2) · · ·ψkd
(ηd)

• Typical truncation rule: total-order p, k1 + k2 + . . . kd ≤ p.

Number of terms is K = (d+p)!
d!p! .

• Essentially, a parameterization of a r.v. by deterministic spectral
modes ck .

• Most common standard Polynomial-Variable pairs:

(continuous) Gauss-Hermite, Legendre-Uniform,

(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]



Bayesian inference of PC surrogate

u ≃∑K−1
k=0 ckΨk(x) ≡ gc(x)

Posterior
︷ ︸︸ ︷

P(c|D) ∝
Likelihood
︷ ︸︸ ︷

P(D|c)
Prior
︷︸︸︷

P(c)

• Data consists of training runs

D ≡ {(xi, ui)}N
i=1

• Likelihood with a gaussian noise model with σ2 fixed or inferred,

L(c) = P(D|c) =
(

1

σ
√

2π

)N N∏

i=1

exp

(

− (ui − gc(x))
2

2σ2

)

• Prior on c is chosen to be conjugate, uniform or gaussian.

• Posterior is a multivariate normal

c ∈ MVN (µ,Σ)

• The (uncertain) surrogate is a gaussian process

K−1∑

k=0

ckΨk(x) = Ψ(x)T c ∈ GP(Ψ(x)Tµ,Ψ(x)ΣΨ(x′)T)



Sensitivity information comes free with PC surrogate,

g(x1, . . . , xd) =

K−1∑

k=0

ckΨk(x)

• Main effect sensitivity indices

Si =
Var[E(g(x|xi)]

Var[g(x)]
=

∑

k∈Ii
c2

k ||Ψk||2
∑

k>0 c2
k||Ψk||2

Ii is the set of bases with only xi involved



Sensitivity information comes free with PC surrogate,

g(x1, . . . , xd) =

K−1∑

k=0

ckΨk(x)

• Main effect sensitivity indices

Si =
Var[E(g(x|xi)]

Var[g(x)]
=

∑

k∈Ii
c2

k ||Ψk||2
∑

k>0 c2
k||Ψk||2

• Joint sensitivity indices

Sij =
Var[E(g(x|xi, xj)]

Var[g(x)]
− Si − Sj =

∑

k∈Iij
c2

k ||Ψk||2
∑

k>0 c2
k||Ψk||2

Iij is the set of bases with only xi and xj involved



Sensitivity information comes free with PC surrogate,

but not with piecewise PC

g(x1, . . . , xd) =

K−1∑

k=0

ckΨk(x)

• Main effect sensitivity indices

Si =
Var[E(g(x|xi)]

Var[g(x)]
=

∑

k∈Ii
c2

k ||Ψk||2
∑

k>0 c2
k||Ψk||2

• Joint sensitivity indices

Sij =
Var[E(g(x|xi, xj)]

Var[g(x)]
− Si − Sj =

∑

k∈Iij
c2

k ||Ψk||2
∑

k>0 c2
k||Ψk||2

• For piecewise PC, need to resort to Monte-Carlo estimation

[Saltelli, 2002].



Basis normalization helps the success rate
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Input correlations: Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarily independent) set of

random variables λ = (λ1, . . . , λd) to uniform i.i.d.’s {xi}d
i=1

[Rosenblatt, 1952].

x1 = F1(λ1)

x2 = F2|1(λ2|λ1)

x3 = F3|2,1(λ3|λ2, λ1)

...

xd = Fd|d−1,...,1(λd|λd−1, . . . , λ1)
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• Inverse Rosenblatt transformation λ = R−1(x) ensures a well-defined input

PC construction

λi =
K−1∑

k=0

λikΨk(x)

• Caveat: the conditional distributions are often hard to evaluate accurately.



Strong discontinuities/nonlinearities challenge global

polynomial expansions

• Basis enrichment [Ghosh & Ghanem, 2005]

• Stochastic domain decomposition

• Wiener-Haar expansions,

Multiblock expansions,

Multiwavelets, [Le Maı̂tre et al, 2004,2007]

• also known as Multielement PC [Wan & Karniadakis, 2009]

• Smart splitting, discontinuity detection

[Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]

• Data domain decomposition,

• Mixture PC expansions [Sargsyan et al, 2010]

• Data clustering, classification,

• Piecewise PC expansions



Piecewise PC expansion with classification

• Cluster the training dataset into non-overlapping subsets D1

and D2, where the behavior of function is smoother

• Construct global PC expansions gi(x) =
∑

k cikΨk(x) using

each dataset individually (i = 1, 2)

• Declare a surrogate

gs(x) =

{

g1(x) if x ∈∗ D1

g2(x) if x ∈∗ D2

∗ Requires a classification step to find out which cluster x

belongs to. We applied Random Decision Forests (RDF).

• Caveat: the sensitivity information is harder to obtain.


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	anm1: 


