High-Dimensional Sparse Surrogate Construction via Bayesian Compressive Sensing

K. Chowdhary¹, K. Sargsyan¹, C. Safta¹, D. Ricciuto², B.Debusschere¹, H. Najm¹, P. Thornton²

¹Sandia National Laboratories Livermore, CA

²Oak Ridge National Laboratory Oak Ridge, TN

Sponsored by DOE, Biological and Environmental Research, under Accelerated Climate Modeling for Energy (ACME).

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 1/20

- Surrogates needed for complex models
- Polynomial Chaos (PC) surrogates do well with uncertain inputs
- Bayesian regression provide results with uncertainty certificate
- Compressive sensing ideas deal with high-dimensionality

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- \bullet \cdots
- Computationally expensive model simulations, data sparsity
	- Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
	- Too many samples needed to cover the space
	- Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- \bullet \cdots
- Computationally expensive model simulations, data sparsity
	- Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
	- Too many samples needed to cover the space
	- Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- · · ·

- Computationally expensive model simulations, data sparsity
	- Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
	- Too many samples needed to cover the space
	- Too many terms in the polynomial expansion

• Build/presume PC for input parameter λ

$$
\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{x})
$$

• Build/presume PC for input parameter λ

$$
\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{x})
$$

• E.g., gaussian with known moments μ_i, σ_i ,

$$
\lambda_i = \mu_i + \sigma_i x_i
$$

• Build/presume PC for input parameter λ

$$
\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{x})
$$

• Input parameters are represented via their cumulative distribution function $F(\cdot)$, such that, with $x_i \sim$ Uniform[−1, 1]

$$
\lambda_i = F_{\lambda_i}^{-1} \left(\frac{x_i + 1}{2} \right), \qquad \text{for } i = 1, 2, \dots, d.
$$

• Build/presume PC for input parameter λ

$$
\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{x})
$$

• If input parameters are uniform in $[a_i, b_i]$, then

$$
\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i
$$

• Build/presume PC for input parameter λ

$$
\boldsymbol{\lambda}(\boldsymbol{x}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{x})
$$

• If input parameters are uniform in $[a_i, b_i]$, then

$$
\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i
$$

• Forward function $f(\cdot)$, output u

$$
u = f(\lambda(\mathbf{x})) \qquad \qquad u = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g(\mathbf{x})
$$

- Global sensitivity information for free
	- Sobol indices, variance-based decomposition.

Alternative methods to obtain PC coefficients

$$
u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

- **Projection** $\langle u(\boldsymbol{\mathcal{X}}) \Psi_k(\boldsymbol{\mathcal{X}}) \rangle$ $\overline{\langle \Psi_k^2(\boldsymbol{X}) \rangle}$ The integral $\langle u(x)\Psi_k(x)\rangle = \int u(x)\Psi_k(x)dx$ can be estimated by
	- Monte-Carlo

$$
\frac{1}{N}\sum_{j=1}^N u(\pmb{x}_j)\Psi_k(\pmb{x}_j)
$$

• Quadrature

many(!) random samples

samples at quadrature

Alternative methods to obtain PC coefficients

$$
u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

- **Projection** $\langle u(\boldsymbol{\mathcal{X}}) \Psi_k(\boldsymbol{\mathcal{X}}) \rangle$ $\langle \Psi_k^2(\boldsymbol{x}) \rangle$ The integral $\langle u(x)\Psi_k(x)\rangle = \int u(x)\Psi_k(x)dx$ can be estimated by
	- Monte-Carlo

many(!) random samples

• Bayesian regression

 $P(c_k|u(\mathbf{x}_i)) \propto P(u(\mathbf{x}_i)|c_k)P(c_k)$

samples at quadrature

any (number of) samples

Alternative methods to obtain PC coefficients

$$
u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

- Projection $\langle u(\boldsymbol{\mathcal{X}}) \Psi_k(\boldsymbol{\mathcal{X}}) \rangle$ $\overline{\langle \Psi_k^2(\boldsymbol{X}) \rangle}$ The integral $\langle u(x)\Psi_k(x)\rangle = \int u(x)\Psi_k(x)dx$ can be estimated by
	- Monte-Carlo

many(!) random samples

• Bayesian regression

Posterior

Likelihood Prior

samples at quadrature

any (number of) samples

$$
y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

$$
\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)
$$

• **ISSues:** $\frac{2}{5}$

• how to properly choose the basis set? **⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰**

• need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)

- Discover the underlying low-d structure in the model
	- get help from the machine learning community

$$
y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

$$
\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)
$$

• Issues:

• how to properly choose the basis set? **⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰**

• need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)

- Discover the underlying low-d structure in the model
	- get help from the machine learning community

$$
y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$
\n
$$
\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)
$$
\n• **is**\n• **is**\

- need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
	- get help from the machine learning community

Dim 1

$$
y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$
\n
$$
\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)
$$
\n• **ISSUES:**\n
$$
\sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

• how to properly choose the basis set? **⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰**

- need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
	- get help from the machine learning community

$$
y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$
\n
$$
\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)
$$
\n• Issues:
\n• lossues:
\n• how to properly choose the basis set?

• need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)

- Discover the underlying low-d structure in the model
	- get help from the machine learning community

Dim 1

In a different language....

- *N* training data points (x_n, u_n) and *K* basis terms $\Psi_k(\cdot)$
- Projection matrix $P^{N \times K}$ with $P_{nk} = \Psi_k(x_n)$
- Find regression weights $c = (c_0, \ldots, c_{K-1})$ so that

$$
u \approx Pc \qquad \text{or} \qquad u_n \approx \sum_k c_k \Psi_k(x_n)
$$

- The number of polynomial basis terms grows fast; a *p*-th order, *d*-dimensional basis has a total of $K = (p + d)!/(p!d!)$ terms.
- For limited data and large basis set $(N < K)$ this is a sparse signal recovery problem \Rightarrow need some regularization/constraints.
- Least-squares $argmin_c \{||u - Pc||_2\}$

• The 'sparsest'
$$
argmin_{c} \{ ||u - Pc||_2 + \alpha ||c||_0 \}
$$

• Compressive sensing *argminc* $argmin_c \{||u - Pc||_2 + \alpha ||c||_1\}$

In a different language....

- *N* training data points (x_n, u_n) and *K* basis terms $\Psi_k(\cdot)$
- Projection matrix $P^{N \times K}$ with $P_{nk} = \Psi_k(x_n)$
- Find regression weights $\mathbf{c} = (c_0, \ldots, c_{K-1})$ so that

$$
u \approx Pc \qquad \text{or} \qquad u_n \approx \sum_k c_k \Psi_k(x_n)
$$

- The number of polynomial basis terms grows fast; a *p*-th order, *d*-dimensional basis has a total of $K = (p + d)!/(p!d!)$ terms.
- For limited data and large basis set $(N < K)$ this is a sparse signal recovery problem \Rightarrow need some regularization/constraints.
- Least-squares $argmin_c \{||u - Pc||_2\}$
- The 'sparsest' $argmin_c \{||u - Pc||_2 + \alpha ||c||_0\}$
- Compressive sensing **Bayesian**

$$
argmin_{\mathcal{C}} \{ ||\mathbf{u} - \mathbf{P} \mathbf{c}||_2 + \alpha ||\mathbf{c}||_1 \}
$$

Likelihood Prior

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 7/20

Weighted Bayesian Compressive Sensing

• Dimensionality reduction by using hierarchical priors

$$
p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k}e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha_k) = \frac{\alpha_k}{2}e^{-\frac{\alpha_k\sigma_k^2}{2}}
$$

• Effectively, one obtains Laplace *sparsity* prior

$$
p(\mathbf{c}|\boldsymbol{\alpha}) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2)p(\sigma_k^2|\alpha_k)d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha_k}}{2}e^{-\sqrt{\alpha_k}|c_k|}
$$

• Evidence maximization dictates values for σ_k^2 , α_k , σ^2 and allows exact Bayesian solution

$$
\mathbf{c} \sim \mathcal{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

with

$$
\mu = \sigma^{-2} \Sigma P^T u \qquad \qquad \Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}
$$

• KEY: Some $\sigma_k^2 \to 0$, hence the corresponding basis terms are dropped.

BCS removes unnecessary basis terms

The square (*i*, *j*) represents the (log) spectral coefficient for the basis term $\psi_i(x)\psi_j(y)$.

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 9/20

Success rate grows with more data and 'sparser' model

Consider test function

$$
f(\mathbf{x}) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

K

where only *S* coefficients *c^k* are non-zero. Typical setting is

 $S < N < K$

Success rate grows with more data and 'sparser' model

Consider test function

$$
f(\mathbf{x}) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})
$$

where only *S* coefficients *c^k* are non-zero. Typical setting is

 $S < N < K$

BCS recovers true PC coefficients with increased number of measurements

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 11/20

BCS recovers true PC coefficients with increased number of measurements

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 11/20

BCS recovers true PC coefficients with increased number of measurements

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 11/20

WBCS recovers true coefficients better

Iteratively reweighting Compressive Sensing [Candes *et al.*, 2007]

Sparsest solution: $min||c||_0$ such that $u \approx Pc$ Compressive sensing: $min||c||_1$ such that $u \approx Pc$

Weighted compressive sensing: $min||Wc||_1$ such that $u \approx Pc$

Sparsest solution: $min||c||_0$ such that $u \approx Pc$ Compressive sensing: $min||c||_1$ such that $u \approx Pc$ Weighted compressive sensing: $min||Wc||_1$ such that $u \approx Pc$

For sparse signals, $u = Pc^s$, with $||c_s||_0 = S < K$, ideal weights are

$$
W = diag\left(\frac{1}{|c_k^s|}\right)
$$
 [i.e., $W_{kk} = +\infty$ if $c_k^s = 0$]

In practice, the true signal coefficients are not known, so...

Sparsest solution: $min||c||_0$ such that $u \approx Pc$ Compressive sensing: $min||c||_1$ such that $u \approx Pc$ Weighted compressive sensing: $min||Wc||_1$ such that $u \approx Pc$

For sparse signals, $u = Pc^s$, with $||c_s||_0 = S < K$, ideal weights are

$$
\mathbf{W} = diag\left(\frac{1}{|c_k^s|}\right) \qquad \qquad [\text{i.e., } W_{kk} = +\infty \text{ if } c_k^s = 0]
$$

In practice, the true signal coefficients are not known, so...

Iterative re-weighting

$$
\mathbf{W}^{(i+1)} = diag\left(\frac{1}{|c_k^{(i)}| + \epsilon}\right)
$$

 $\epsilon \ll 1$ for stability

Iterative Bayesian Compressive Sensing (iBCS)

Iterative BCS: We implement an iterative procedure that allows increasing the order for the relevant basis terms while maintaining the dimensionality reduction [Sargsyan *et al.* 2014], [Jakeman *et al.* 2015].

Iterative Bayesian Compressive Sensing (iBCS)

• Combine basis growth and reweighting!

Basis set growth: simple anisotropic function

Basis set growth: ... added outlier term

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

- Nested computational grid hierarchy
- A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU \bullet
- Involves ∼ 50 input parameters; some dependent \bullet
- Non-smooth input-output relationship

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters \bullet
- \bullet Joint sensitivities : most influential input couplings
- \bullet About 200 polynomial basis terms in the 50-dimensional space
- \bullet Sparse PC will further be used for
	- sampling in a reduced space
• parameter calibration against
	- parameter calibration against experimental data

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters \bullet
- Joint sensitivities : most influential input couplings \bullet
- \bullet About 200 polynomial basis terms in the 50-dimensional space
- \bullet Sparse PC will further be used for
	- sampling in a reduced space
	- parameter calibration against experimental data

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 18/20

Summary

- Surrogate models are necessary for complex models
	- Replace the full model for both forward and inverse UQ
- Uncertain inputs
	- Polynomial Chaos surrogates well-suited
- **•** Limited training dataset
	- Bayesian methods handle limited information well
- Curse of dimensionality
	- The hope is that not too many dimensions matter
• Compressive sensing (CS) ideas ported from ma
	- Compressive sensing (CS) ideas ported from machine learning
	- We implemented *iteratively* reweighting Bayesian CS algorithm that reduces dimensionality and increases order on-the-fly.

O Open issues

- Computational design. What is the best sampling strategy?
- Overfitting still present. Cross-validation techniques help.

Literature

- M. Tipping, "Sparse Bayesian learning and the relevance vector machine", *J Machine Learning Research*, 1, pp. 211-244, 2001.
- S. Ji, Y. Xue and L. Carin, "Bayesian compressive sensing", *IEEE Trans. Signal Proc.*, 56:6, 2008.
- S. Babacan, R. Molina and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors", *IEEE Trans. Image Proc.*, 19:1, 2010.
- E. J. Candes, M. Wakin and S. Boyd. "Enhancing sparsity by reweighted ℓ_1 minimization", *J. Fourier Anal. Appl.*, 14 877-905, 2007.
- A. Saltelli, "Making best use of model evaluations to compute sensitivity indices",*Comp Phys Comm*, 145, 2002.
- K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto and P. Thornton, "Dimensionality reduction for complex models via Bayesian compressive sensing", *Int J for Uncertainty Quantification*, 4(1), pp. 63-93,2014.
- J. Jakeman, M. Eldred and K. Sargsyan, "Enhancing ℓ_1 -minimization estimates of polynomial chaos expansions using basis selection", *J Comp Phys*, in press, 2015, see ArXiv.

Random variables represented by Polynomial Chaos

$$
X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})
$$

• $\boldsymbol{\eta} = (\eta_1, \cdots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

 $\Psi_k(\eta_1, \eta_2, \ldots, \eta_d) = \psi_{k_1}(\eta_1) \psi_{k_2}(\eta_2) \cdots \psi_{k_d}(\eta_d)$

- Typical truncation rule: total-order $p, k_1 + k_2 + \ldots k_d \leq p$. Number of terms is $K = \frac{(d+p)!}{d!p!}$ $\frac{a+p}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes *c^k* .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, Legendre-Uniform, (discrete) Poisson-Charlier.

Bayesian inference of PC surrogate

$$
u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g_{\mathbf{C}}(\mathbf{x})
$$

• Data consists of *training runs*

$$
\mathcal{D} \equiv \{(\mathbf{x}_i, u_i)\}_{i=1}^N
$$

• Likelihood with a gaussian noise model with σ^2 fixed or inferred,

$$
L(c) = P(\mathcal{D}|c) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{(u_i - g_c(x))^2}{2\sigma^2}\right)
$$

- Prior on *c* is chosen to be conjugate, uniform or gaussian.
- Posterior is a *multivariate normal*

$$
c\quad\in\quad\mathcal{MVN}(\mu,\boldsymbol{\Sigma})
$$

• The (uncertain) surrogate is *a gaussian process*

$$
\sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) = \Psi(\mathbf{x})^T \mathbf{c} \in \mathcal{GP}(\Psi(\mathbf{x})^T \mu, \Psi(\mathbf{x}) \Sigma \Psi(\mathbf{x}^{\prime})^T)
$$

Sensitivity information comes free with PC surrogate,

$$
g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\pmb{x})
$$

• Main effect sensitivity indices

$$
S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}
$$

 \mathbb{I}_i is the set of bases with only x_i involved

Sensitivity information comes free with PC surrogate,

$$
g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\pmb{x})
$$

• Main effect sensitivity indices

$$
S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}
$$

• Joint sensitivity indices

$$
S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j)]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}
$$

 \mathbb{I}_{ij} is the set of bases with only x_i and x_j involved

Sensitivity information comes free with PC surrogate,

but not with piecewise PC

$$
g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\mathbf{x})
$$

• Main effect sensitivity indices

$$
S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}
$$

• Joint sensitivity indices

$$
S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j)]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}
$$

• For piecewise PC, need to resort to Monte-Carlo estimation [Saltelli, 2002].

Basis normalization helps the success rate

Input correlations: Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarily independent) set of random variables $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_d)$ to uniform i.i.d.'s $\{x_i\}_{i=1}^d$ [Rosenblatt, 1952].

• Inverse Rosenblatt transformation $\lambda = R^{-1}(x)$ ensures a well-defined input PC construction

$$
\lambda_i = \sum_{k=0}^{K-1} \lambda_{ik} \Psi_k(\pmb{x})
$$

• Caveat: the conditional distributions are often hard to evaluate accurately.

Strong discontinuities/nonlinearities challenge global polynomial expansions

- Basis enrichment [Ghosh & Ghanem, 2005]
- Stochastic domain decomposition
	- Wiener-Haar expansions, Multiblock expansions, Multiwavelets, [Le Maître et al, 2004,2007]
	- also known as Multielement PC [Wan & Karniadakis, 2009]
- Smart splitting, discontinuity detection [Archibald *et al*, 2009; Chantrasmi, 2011; Sargsyan *et al*, 2011; Jakeman *et al*, 2012]
- Data domain decomposition,
	- Mixture PC expansions *[Sargsyan et al, 2010]*
- Data clustering, classification,
	- Piecewise PC expansions

Piecewise PC expansion with classification

- Cluster the training dataset into non-overlapping subsets \mathcal{D}_1 and \mathcal{D}_2 , where the behavior of function is smoother
- Construct global PC expansions $g_i(\mathbf{x}) = \sum_k c_{ik} \Psi_k(\mathbf{x})$ using each dataset individually $(i = 1, 2)$
- Declare a surrogate

$$
g_s(\mathbf{x}) = \begin{cases} g_1(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_1 \\ g_2(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_2 \end{cases}
$$

[∗] Requires a classification step to find out which cluster *x* belongs to. We applied Random Decision Forests (RDF).

• Caveat: the sensitivity information is harder to obtain.