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OUTLINE

Surrogates needed for complex models

Polynomial Chaos (PC) surrogates do well with uncertain inputs

Bayesian regression provide results with uncertainty certificate

Compressive sensing ideas deal with high-dimensionality

K. Sargsyan (ksargsy@sandia.gov) UNCECOMP 2015, Crete May 27, 2015 2/20



Surrogate construction: scope and challenges
Construct surrogate for a complex model f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration
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Surrogate construction: scope and challenges
Construct surrogate for a complex model f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity
Need to build accurate surrogates with as few
training runs as possible
e High-dimensional input space
Too many samples needed to cover the space
Too many terms in the polynomial expansion
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Polynomial Chaos surrogate

e Build/presume PC for input parameter A

Alx) = iak\llk(x)
k=0
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Polynomial Chaos surrogate

e Build/presume PC for input parameter A
K—1
Alx) = Zak\llk(x)
k=0

e E.g., gaussian with known moments p;, o;,

Ai = pi + 0ix;
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Polynomial Chaos surrogate

e Build/presume PC for input parameter A
K—1
Alx) = Zak\llk(x)
k=0

e Input parameters are represented via their cumulative distribution
function F(-), such that, with x; ~ Uniform[—1, 1]

1
)\i:F/\’_l(x;r ) fori=1,2,...,d.
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Polynomial Chaos surrogate

e Build/presume PC for input parameter A
K—1
Alx) = Zak\llk(x)
k=0
o If input parameters are uniform in [a;, b;], then

ai+bi  bi—a
—_l’_—

Ai = i
2 2
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Polynomial Chaos surrogate

Build/presume PC for input parameter A

K—1
Alx) = Z a; Vi (x)
k=0

If input parameters are uniform in [a;, b;], then

ai+bi  bi—a
—+—

A = i
2 2

Forward function f(-), output u

K—1
u=f(A(x)) u=> cW(x) = g(x)
k=0

Global sensitivity information for free
- Sobol indices, variance-based decomposition.
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Alternative methods to obtain PC coefficients
K—1
U~ Ui (x)
k=0

e Projection o = %W
. k

The integral (u(x)¥(x)) = [ u(x)¥«(x)dx can be estimated by
e Monte-Carlo

N
¥ > u(x)) Wi (x)) many(!) random samples
j=1
e Quadrature
Q T
Zu(xj)\lfk(xj)wj - : samples at quadrature
= L
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Alternative methods to obtain PC coefficients

U~ icklllk
k=0

e Projection cp = WX TXL))
( )%« (x)dx can be estimated by

The integral (u(x)¥(x)) =
e Monte-Carlo

gt

e Bayesian regression

P(cx|u(x;)) oc P(u(x;)|ex)P(ck)
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Alternative methods to obtain PC coefficients

The integral (u(x)¥(x)) =
e Monte-Carlo

e Bayesian regression

P(c|D) x P(DJc) P(c)
~—— ——
Likelihood Prior

Posterior
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Bayesian inference of PC surrogate: nigh-d, low-data regime

y=u(x) ~ Y ali(x)

W1, %2, o0y Xa) = i (1)1 (¥2) -+ Py (xa) oo o e
e Issues:
, Nhow to properly choose OS0!
the basis set? L

=
-

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community
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Bayesian inference of PC surrogate: nigh-d, low-data regime

y=u(x) ~ Y ali(x)

Wi (X1, X2, o0 Xa) = Py (X1) Pk (X2) - - - i, (%)
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N < K: fewer data than bases (d.o.f.)
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In a different language....

e N training data points (x,,u,) and K basis terms ¥, (-)

o Projection matrix PV*K with P, = W (x,,)

e Find regression weights ¢ = (¢, ..., ckx—1) so that

up =Y e Wi(x,)

u ~ Pc or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

e For limited data and large basis set (N < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argmin, {|lu — Pc||»}
e The ‘sparsest’ argmin, {|lu — Pc||> + cle||o}
e Compressive sensing argming {||lu — Pc||, + ollc||1 }
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In a different language....

e N training data points (x,,u,) and K basis terms W, (-)

o Projection matrix PV*K with P, = W (x,)

e Find regression weights ¢ = (¢, ..., ck—1) so that

up =y e Wi(xn)

u = Pc or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

e For limited data and large basis set (N < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argmin, {||u — Pc||>}

e The ‘sparsest’ argming {||lu — Pcl| + ollc||o}

e Compressive sensing argming {||lu — Pc||, + ollc||1 }
Bayesian Likelihood Prior
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Weighted Bayesian Compressive Sensing

e Dimensionality reduction by using hierarchical priors

2
i o ek
P(Ck|05):me 24 plot]ou) = 7k€

o Effectively, one obtains Laplace sparsity prior

HP(CkIUf) (ot ax)d H VU —vailal
=0

e Evidence maximization dictates values for o7, ax, o and allows exact
Bayesian solution
¢~ MVN(p,X)
with
=0 "XPu S = o*(P'P + diag(c? /o))"

e KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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BCS removes unnecessary basis terms

2
f(x,y) = cos(x + 4y) f(x,y) = cos(x” +4y)
Order d|m 2) Order (dim 2)
2 1 2 3 4 5 6 7
0 -2 0 -2
1 4 4 4
2 2
-6 -6
3 3
= = 8
£ B £
Ts -10 Ts -10
3 3
59 12 59 -12
7 7
-14
8 14 8 !
9 16 9 16
10 18 10 -18

The square (i, ) represents the (log) spectral coefficient
for the basis term +;(x)¢;(y).
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Success rate grows with more data and ‘sparser’ model

Consider test function

o) = 3 i)
k=0

where only S coefficients ¢, are non-zero. Typical setting is

S<N<K
1.
0.0 /
. 7
©
=0
0 /
(V]
00.4
3
m /
0.2 /
0. 0 10 20 30 40 50 60 70

Number of measurements
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Success rate grows with more data and ‘sparser’ model

Consider test function

where only S coefficients ¢, are non-zero. Typical setting is
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BCS recovers true PC coefficients with increased
number of measurements

107!

Coef magnitude, ¢, |

-8 L : :
10 [{® @ Truth RS S P LRSS S EEE RS U CEEEE SIS
% % BCS w/N=30

-9 T R
107 20 2 6 80 100
Coefld, &
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BCS recovers true PC coefficients with increased
number of measurements
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WBCS recovers true coefficients better
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f(x) = xocos (e + Z?:l xi/i)
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution:  min||c||o such that u ~ Pc
Compressive sensing: min||c||; such that u ~ Pc
Weighted compressive sensing: ~ min||Wc||; such that u ~ Pc
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Compressive sensing: min||c||; such that u ~ Pc
Weighted compressive sensing: ~ min||Wc||; such that u ~ Pc

For sparse signals, u = Pc*, with ||ci||o = S < K, ideal weights are
_ 1 : s
W = diag m [i.e., Wi = +o0if ¢ = 0]
k

In practice, the true signal coefficients are not known, so...
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution:  min||c||o such that u ~ Pc
Compressive sensing: min||c||; such that u ~ Pc
Weighted compressive sensing: ~ min||Wc||; such that u ~ Pc

For sparse signals, u = Pc*, with ||ci||o = S < K, ideal weights are

1 . .

W = diag (W) li.e., Wi = +o0 if ¢ = 0]
k

In practice, the true signal coefficients are not known, so...

lterative re-weighting

‘ 1
Wit = diag (W) [e < 1 for stability]
Cp | €
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lterative Bayesian Compressive Sensing (iBCS)

@ terative BCS: We implement an iterative procedure that allows
increasing the order for the relevant basis terms while maintaining the
dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

Model data
¥

New Basis

\_

initial Basis |-
lterations

Basis
Growth

\

—| Final Basis
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lterative Bayesian Compressive Sensing (iBCS)

@ Combine basis growth and reweighting!

Model data

-

Initial Basis —

-

¥

Weighted
BCS

New Basis

Iterations

Sparse Basis

Basis
Growth
Reweighting

—>| Final Basis
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Basis set growth: simple anisotropic function

Dim 2
Wb

40 ® @

®
® O
T2

3 4 5 6 7
Dim 1
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Basis set growth: ... added outlier term

Dim 2
Wb

J4® O @

®
O-@
T2

3 4 5 6 7
Dim 1
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Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/cim/

@ Nested computational grid hierarchy

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 50 input parameters; some dependent

@ Non-smooth input-output relationship
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Sparse PC surrogate for the Community Land Model

Main effect sensitivities : rank input parameters

Joint sensitivities : most influential input couplings

About 200 polynomial basis terms in the 50-dimensional space
Sparse PC will further be used for

» sampling in a reduced space
o parameter calibration against experimental data

14
- CLM data
25| . o 10-froot leat
Surrogate model 14 7-finr
13- leat long
7 21 - slatop
2 7 11 - frootcn
3a-dmp
= 16-q1omr
315 27-br_mr
= o 14 - leafen
13
1
f
5
2
11
0 2000 2000 6000 8000
runiD
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Sparse PC surrogate for the Community Land Model

@ Main effect sensitivities : rank input parameters

@ Joint sensitivities : most influential input couplings

@ About 200 polynomial basis terms in the 50-dimensional space
@ Sparse PC will further be used for

e sampling in a reduced space
o parameter calibration against experimental data

ZOMR |
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Q10_MR}

L
<
u
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o
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Summary

@ Surrogate models are necessary for complex models
Replace the full model for both forward and inverse UQ

@ Uncertain inputs
Polynomial Chaos surrogates well-suited

@ Limited training dataset
Bayesian methods handle limited information well

@ Curse of dimensionality
The hope is that not too many dimensions matter
Compressive sensing (CS) ideas ported from machine learning
We implemented iteratively reweighting Bayesian CS algorithm that
reduces dimensionality and increases order on-the-fly.

@ Open issues
Computational design. What is the best sampling strategy?
Overfitting still present. Cross-validation techniques help.
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Random variables represented by Polynomial Chaos

=

-1
X~ aVi(n)

»
I
)

n=(m,--- 1) standard i.i.d. r.v.
U, standard polynomials, orthogonal w.r.t. 7(n).

U1, m2, -5 Ma) = Vi () Yk, (m2) -+ - Py (M)

Typical truncation rule: total-order p, k; + k> + ... kg < p.
Number of terms is K = (L2,

Essentially, a parameterization of a r.v. by deterministic spectral
modes ¢ .

Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]



Bayesian inference of PC surrogate

Posterior Likelihood Prior

K—1 —
U~y o caVi(x) = ge(x) P(¢|D) x P(D|c) P(c)
e Data consists of training runs
D= {(xl? )}1 1

o Likelihood with a gaussian noise model with ¢ fixed or inferred,

) Hon(-52)

Prior on ¢ is chosen to be conjugate, uniform or gaussian.

Lie) = P(Dle) =

Posterior is a multivariate normal
¢c € MVN(X)

The (uncertain) surrogate is a gaussian process

X_:ck\I/k(x):\Il(x)Tc € GP(O(x) u, ¥x)Zw(x))



Sensitivity information comes free with PC surrogate,

K—1
glxr, ..., xq) = ch‘lfk(x)
k=0
e Main effect sensitivity indices

g _ Var[E(g(x|x;)] _ > kel ALk
L Var(g(x)] > k>0 Rl Wl 2

I; is the set of bases with only x; involved




Sensitivity information comes free with PC surrogate,

K—1
glxr, ..., xq) = ch‘lfk(x)
k=0
e Main effect sensitivity indices

g _ Var[E(g(x|x;)] _ > kel ALk
L Var(g(x)] > k>0 Rl Wl 2

¢ Joint sensitivity indices

s, = YarE(s(x]x )] _ Zoren, il Tl
’ Var(g(x)] > k>0 Ci”‘l’k”z

I; is the set of bases with only x; and x; involved

— 85—



Sensitivity information comes free with PC surrogate,

but not with piecewise PC

K—1

glxr, ... yx E i Ur(x

k=0
e Main effect sensitivity indices

Var[E(g(x|x;)] _ > kel el [kl ?
Var(g(x)] > k0 Gl W2

¢ Joint sensitivity indices

Si =

o Var[E(g(x|xi,x;)] S _ 8, — kel ALlE
’ Var(g(x)] T Yol Tl

e For piecewise PC, need to resort to Monte-Carlo estimation
[Saltelli, 2002].



Basis normalization helps the success rate

1.
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Input correlations: Rosenblatt transformation

o Rosenblatt transformation maps any (not necessarily independent) set of
random variables A = (A4, ..., \s) to uniformi.i.d.’s {x}<_
[Rosenblatt, 1952].

xi = Fi(\)

v = Fp(ali)

x o= Fipi(Aslh, M)

xo = Fgaoi,. 1(MalXat, ... A1)

Cellulose - Labile

e Inverse Rosenblatt transformation A = R~'(x) ensures a well-defined input
PC construction

K—1
Al‘ = Z A[k‘llk(x)
k=0

e Caveat: the conditional distributions are often hard to evaluate accurately.



Strong discontinuities/nonlinearities challenge global
polynomial expansions

e Basis enrichment [Ghosh & Ghanem, 2005]

Stochastic domain decomposition
Wiener-Haar expansions,
Multiblock expansions,
Multiwavelets, [Le Maitre et al, 2004,2007]

also known as Multielement PC [Wan & Karniadakis, 2009]

Smart splitting, discontinuity detection
[Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]

Data domain decomposition,

Mixture PC expansions [Sargsyan et al, 2010]
Data clustering, classification,

Piecewise PC expansions



Piecewise PC expansion with classification

e Cluster the training dataset into non-overlapping subsets D,
and D,, where the behavior of function is smoother

e Construct global PC expansions g;(x) = >, ciVx(x) using
each dataset individually (i = 1, 2)

e Declare a surrogate

gi(x) ifxe" Dy
gs(x) = . *
g(x) ifxe* D,

* Requires a classification step to find out which cluster x
belongs to. We applied Random Decision Forests (RDF).

e Caveat: the sensitivity information is harder to obtain.
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