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Community Land Model (CLM) Uncertainty quantification challenges

Nested computational grid hierarchy Computationally expensive model simulatiods (

Represents spatial heterogeneity of the land surface Physical constraints on some input paramet2)s (

A single-site, 1000-yr simulatiorn 10 hrs on 1 CPU High-dimensional input parameter spac (

Nonsmooth dependence of outputs on inpd)s (

Involves~ 80 input parameters

http://www.cesm.ucar.edu/models/cim/

1 Surrogate ge(A) ~ G()) is necessary for expensive models Surrogate model and global sensitivity indices for Leaf Ara Index

e Surrogate constructed using oril§000 training simulations

o While full second order basis has 3000 terms, the iterative BCS algorithm pick
only ~ 100 of them that are able to capture the data well

e Surrogate sensitivity indices computed via Monte Carlo
e Circle sizes correspond to main effect sensitivity indices
e Allows propagation of input parameter uncertainties tatg of interest e Line widths correspond to joint sensitivity indices

e Interprets input parameters as random variables

The surrogate model can be queried instead of the CLM for e &lsen-
sitivity analysis, b) Optimization, c) Forward uncertgiqropagation, d)
Calibration.

Polynomial chaos model as a surrogate model
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3 Bayesian inference of PC modes leads to a probabilistic susgate
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DataD is the set of all training run® = (X\;, G(\;))Y,. The size ofc, i.e. the number
of polynomial basis terms grows fast;path order, d-dimensional basis has a total df
(p+ d)!/(p!d!) terms. Sparsity priors strive to detect the smallest setsisb
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Gaussian likelihood Lp(c) =

1 V2rs 252 e Surrogate models are necessary for complex climate models
K-1 K-1 e Polynomial Chaos surrogate is inferred using Bayesian mach
Laplace prior p(cla) = / plerlop)plotla)do; = ] \/7587\/5\0,4 e High-dimensionality is addressed by the iterative Bayesiampressive sensing
k=0 k=0 (iBCS) algorithm
lterative Bayesian compressive sensing (iBCS): . Constrained/dependent input parametgrs are mapped tocanstrained input pa-|
dimensionality reduction using sparsity priors rameter set via Rosenblatt transformation
e Data clustering and classification employed for nonsmootdets to obtain a
Data piecewise-PC surrogate model
Full Basis —— Bcl:s — Sg:s’isse - Stop? S, Futlire work
No e Sampling in the reduced space to build a more accurate sierog
. — e Calibration of input parameters given observational data
Basis | Growth e Optimal computational design to improve BCS efficiency

e Local surrogate construction tailored to given observetiaata
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