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Community Land Model (CLM)

• Nested computational grid hierarchy

• Represents spatial heterogeneity of the land surface

• A single-site, 1000-yr simulation∼ 10 hrs on 1 CPU

• Involves∼ 80 input parameters
http://www.cesm.ucar.edu/models/clm/

Uncertainty quantification challenges

• Computationally expensive model simulations (1)

• Physical constraints on some input parameters (2)

• High-dimensional input parameter space (3)

• Nonsmooth dependence of outputs on inputs (4)

1 Surrogategc(λ) ≈ G(λ) is necessary for expensive models

The surrogate model can be queried instead of the CLM for a) Global sen-
sitivity analysis, b) Optimization, c) Forward uncertainty propagation, d)
Calibration.

Polynomial chaos model as a surrogate model

• Allows propagation of input parameter uncertainties to outputs of interest

• Interprets input parameters as random variables

With input parameters modeled as
uniformλi ∼ Uniform[ai, bi],

λi =
ai + bi

2
+

bi − ai
2

ηi.

Output is represented with respect to Legendre
polynomials

G(λ(η)) ≈ gc(η) ≡
K
∑

k=0

ckΨk(η).

2

0.2

0.25

0.4
0.45

0.5

0.3

0.32

0.34

0.36

λ
34λ

33

λ 3
5

Dependent inputs are mapped to
independent ones by Rosenblatt

transformation (RT)

Due to two mass fraction constraints in
CLM, the RT maps an81-dimensional pa-
rameter vectorλ to η ∈ [−1, 1]79.

3 Bayesian inference of PC modes leads to a probabilistic surrogate

p(c|α,D) ∝ LD(c) × p(c|α)
DataD is the set of all training runsD = (λi, G(λi))

N

i=1
. The size ofc, i.e. the number

of polynomial basis terms grows fast; ap-th order,d-dimensional basis has a total of
(p+ d)!/(p!d!) terms. Sparsity priors strive to detect the smallest set of basis.

Gaussian likelihood LD(c) =
N
∏

i=1

1√
2πs

exp

(

−(G(λi)− gc(ηi))
2

2s2

)

Laplace prior p(c|α) =

∫

K−1
∏

k=0

p(ck|σ2

k)p(σ
2

k|α)dσ2
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∏

k=0

√
α
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Iterative Bayesian compressive sensing (iBCS):
dimensionality reduction using sparsity priors

4 Data clustering and
classification-enhanced

piecewise PC surrogate for
nonsmooth outputs

Declare a surrogate

gs(x) =

{

gc1
(x) if x ∈∗ D1

gc2
(x) if x ∈∗ D2

∗ Requires a classification step to find
out which clusterx belongs to. We ap-
plied Random Decision Forests (RDF).
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Surrogate model and global sensitivity indices for Leaf Area Index

• Surrogate constructed using only10000 training simulations

• While full second order basis has∼ 3000 terms, the iterative BCS algorithm picks
only ∼ 100 of them that are able to capture the data well

• Surrogate sensitivity indices computed via Monte Carlo

• Circle sizes correspond to main effect sensitivity indices

• Line widths correspond to joint sensitivity indices
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Sensitivity ranking of the most important input parameters
for each output
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Highlights

• Surrogate models are necessary for complex climate models

• Polynomial Chaos surrogate is inferred using Bayesian machinery

• High-dimensionality is addressed by the iterative Bayesian compressive sensing
(iBCS) algorithm

• Constrained/dependent input parameters are mapped to an unconstrained input pa-
rameter set via Rosenblatt transformation

• Data clustering and classification employed for nonsmooth models to obtain a
piecewise-PC surrogate model

Future work

• Sampling in the reduced space to build a more accurate surrogate

• Calibration of input parameters given observational data

• Optimal computational design to improve BCS efficiency

• Local surrogate construction tailored to given observational data[2, 1]
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