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Uncertainty quantification challenges in climate models

• Computationally expensive model simulations

• High-dimensional input parameter space

• Physical constraints and dependencies for some input parameters

• Non-linear dependence of output quantities of interest on inputs
http://www.cesm.ucar.edu/models/clm/

Community Land Model (CLM)

• Nested computational grid hierarchy

• Represents spatial heterogeneity of the land surface

• A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU

• Involves ∼ 80 input parameters

Problem formulation: surrogate model construction

• Input parameter vector λ

• Forward function (CLM simulation) f(·)

• Given a set of training model runs, (λi, f(λi))
N
i=1

,
build a surrogate fs(·) ≈ f(·) that is cheap to evaluate

The surrogate model can be used for

• Global sensitivity analysis

• Optimization

• Forward uncertainty propagation

• Input parameter inference

Polynomial chaos spectral representation serves as a surrogate model

To build a surrogate representation for
input-output relationship, Polynomial
Chaos (PC) spectral expansions are
used; see [1].

• Interprets input parameters as
random variables

• Allows propagation of input pa-
rameter uncertainties to outputs
of interest

• Serves as a computationally inex-
pensive surrogate for calibration
or optimization

Input parameters are represented via their cumulative distribution
function (CDF) F (·), such that, with ηi ∼ Uniform[−1, 1], we have:

λi = F−1

λi

(

ηi + 1

2

)

, for i = 1, 2, . . . , d.

If input parameters are uniform λi ∼ Uniform[ai, bi], then

λi =
ai + bi

2
+

bi − ai

2
ηi.

Output is represented with respect to Legendre polynomials

f(λ(η)) ≈ yc(η) ≡
K
∑

k=0

ckΨk(η).

Rosenblatt transformation maps constrained input parameters to an unconstrained space
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Given a vector of random variables λ = (λ1, . . . , λd′)
with known joint cumulative distribution function (CDF)
F (λ1, . . . , λd′), one can obtain a set of ηi’s that are in-
dependent uniform random variables on [−1, 1] for all
i = 1, 2, . . . , d, using conditional CDFs. This map, denoted
by η = R(λ), is called the Rosenblatt transformation (RT) [4].

CLM implemented with input parameter constraints

λ18 < λ22,

λ30 + λ31 + λ32 = 1,

λ33 + λ34 + λ35 = 1.

Due to the last two mass fraction constraints, the RT maps
an 81-dimensional parameter vector λ to η ∈ [−1, 1]79.

Bayesian inference of PC modes allows surrogate construction with
uncertainties associated with limited sampling

Bayes formula

p(c|D) ∝ LD(c)p(c)

relates the prior distribution p(c) of PC modes to the
posterior p(c|D), where the data D is the set of all
training runs D = (λi, f(λi))

N
i=1

.

The likelihood accounts for the discrepancy between the
simulation data and the surrogate model [5],

LD(c) ∝ exp

(

−
N
∑

i=1

(f(λi) − yc(ηi))
2

2σ2

)

Iterative Bayesian compressive sensing (BCS):
dimensionality reduction by using sparsity priors

The number of polynomial basis terms grows fast;
a p-th order, d-dimensional basis has a total of (p +
d)!/(p!d!) terms. With large d, one can not afford to
build a PC basis of order greater than two.
In order to use as few basis terms as possible, Gaus-
sian sparsity priors are taken

p(c) ∝
K
∏

k=0

exp

(

−
c2

k

2s2

k

)

.

Then, the posterior is an analytically tractable multivariate
normal distribution. The parameters (σ2, s2

0
, . . . , s2

K) are
fixed by evidence maximization. The optimization leads
to very small s2

i for some indices i - the corresponding
bases are discarded. For details, see [2].

Iterative BCS: We propose and implement an iterative pro-
cedure that allows increasing the order for the relevant
basis terms while maintaining the dimensionality reduc-
tion. Only basis elements best explained by the data are
retained [3].
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Number of training runs needed for reliable detection of important dimensions

Assume λ ∼Uniform[−1, 1]d

and consider test function

y = exp

(

d
∑

i=1

aiλi

)

,

Dimensionality ‘importances’
dialed-in

ai =

{

1 if 1 ≤ i ≤ dimp,

0.1 if dimp < i ≤ d,

dimp d N
1 any 20
2 any 50
5 any 130
10 any 980

Error for different model sparsity levels

Dimensionality ‘importances’ are chosen so that
90% of energy is in a small subset of dimensions,

i.e. model is ‘sparse’.

Validation error increase indicates overfitting.
Nt = 1000 training runs are sufficient if ∼ 10

dimensions matter.
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Results based on N = 987 training runs of CLM

• Single-site mode, N = 987 training runs

• Outputs: steady-state, 10-year averages of 7 quantities

Name Units Description

TOTVEGC gC/m2 Total vegetation carbon
TOTSOMC gC/m2 Total soil carbon
GPP gC/m2/s Gross primary production
ERR W/m2 Energy conservation error
TLAI none Total leaf area index
EFLX LH TOT W/m2 Total latent heat flux
FSH W/m2 Sensible heat flux 0 200 400 600 800 1000
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CLM simulation results, sorted
PC model, 5rd order, 226 terms

First order BCS: ranking of the most important input parameters for each output

rank TOTVEGC TOTSOMC GPP ERR TLAI EFLX LH TOT FSH

1 r mort q10 mr leafcn k s4 froot leaf leafcn rholnir
2 q10 mr leafcn k s4 froot leaf q10 mr q10 mr q10 mr
3 froot leaf froot leaf froot leaf q10 hr q10 hr froot leaf leafcn
4 br mr br mr flnr fflnr leaf long k s4 br mr
5 q10 mr fflnr q10 mr q10 mr k s4 br mr flnr
6 leafcn dnp q10 hr dnp br mr flnr k s4
7 k s4 q10 hr dnp rf s3s4 dnp leaf long taulnir
8 stem leaf leaf long rf s3s4 leaf long stem leaf q10 hr froot leaf
9 flnr k s4 leaf long mp r mort rf s3s4 frootcn
10 dnp frootcn br mr bdnr rf s3s4 stem leaf f frag

Second order BCS: most influential input parameter couplings for each output

• Each axis corresponds to the input parameter list.
(i,j) element corresponds to the λiλj basis term

• While full second order basis has ∼ 3000 terms, the iterative BCS
algorithm picks only ∼ 100 of them that are able to capture the
data well

• Higher order results leads to more accurate surrogate models.
However, strong output non-linearities and smooth bases make
input domain decomposition methods necessary
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Conclusions

• Surrogate models are necessary for complex climate models

• Polynomial Chaos surrogate model is constructed using
Bayesian techniques

• Constrained/dependent input parameters are mapped to an
unconstrained input set via Rosenblatt transformation

• High-dimensionality is tackled by iterative Bayesian compres-
sive sensing algorithm

Future work

• Targeted sampling for relevant basis terms
to build a more accurate surrogate

• Clustering techniques for efficient domain
decomposition to relieve the non-linear ef-
fects

• Spatially distributed input parameters,
global CLM


