
Uncertainty Quantification given Discontinuous
Climate Model Response and a Limited Number of Model Runs

Poster ID: GC23F-0973

KHACHIK SARGSYAN, COSMIN SAFTA, BERT DEBUSSCHERE, HABIB NAJM

Sandia National Laboratories, Livermore, CA

Uncertainty Quantification challenges in complex models

• Limited number of model simulations • Discontinuities/nonlinearities in model response

Spectral methods for Uncertainty Quantification with global, smooth bases are challenged by discontinuities in
model response. Domain decomposition reduces the impact of nonlinearities and discontinuities. However, while
gaining more smoothness in each subdomain, the current domain refinement methods require prohibitively many
simulations. Therefore, discontinuity detection up front provides huge improvement to the current methodologies.

Two-step approach

1. Detect the discontinuity location 2. Obtain spectral expansion on each side

Motivational problem: Global Conveyor Belt

The Meridional Overturning Circulation (MOC) is one of the
most discussed environmental phenomena that can poten-
tially collapse as a result of increased greenhouse gas con-
centrations. In the MOC, warmer surface currents flow
from the tropics northward, towards the North Atlantic
and then cool down due to the heat exchange with the
cooler atmosphere and the ice. As the water becomes
dense enough, it sinks to larger depths and becomes a part
of the global deep water formation, the “global conveyor
belt”, returning to the Southern Ocean.

MOC Streamfunction as a function of CO2 forcing rate (r) and climate sensitivity (λ)
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Consider the uncertainty in the MOC as a function of two un-
certain parameters λ and r, each characterized by a probability
distribution function (PDF).

• Certain (λ, r) parameter pairs lead to MOC shut-off

• MOC streamfunction Z(λ, r) has a sharp gradient across a
‘discontinuity’ curve r = r̃(λ)

• Global methods fail to properly obtain the response surface
for Z(λ, r)

For details, see Webster et al. [5]. The data is used with permis-
sion from the publisher, Baywood Publishing Co., Inc.

Output uncertainty quantification via PC expansions

To propagate input uncertainties to output distributions, Polynomial Chaos (PC) spectral expansions are used; see
Ghanem and Spanos [1].

PC expansion of the input parameters via the in-
verses of their cumulative distribution functions
(CDF)

λ = F−1
λ (η1) =

K
∑

k=0

λkΨk(η1),

r = F−1
r (η2) =

K
∑

k=0

rkΨk(η2)

with Legendre polynomials Ψk(·) of independent,
Uniform[0,1] random variables η1, η2.

Bivariate PC expansion for the output

Z(λ, r) =
P
∑

p=0

zpΨp(η1, η2)

can be found by a Galerkin (orthogonal) projection

zp =
〈Z(λ(η1), r(η2))Ψp(η1, η2)〉

〈Ψ2
p(η1, η2)〉

Global methods fail, since the output Z(λ, r) has a
steep gradient or discontinuity across a curve
r = r̃(λ)

Bayesian inference of the discontinuity curve

• Parameterize the discontinuity curve, e.g.

r = r̃(λ) = c0 + c1λ+ ...

• Approximation model Mγ with parameters
γ = (c,mL,mR, α):
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Mγ ≡ g(λ, r;γ) = mL

1− tanh (α(r − pc(λ)))

2
+mR

1 + tanh (α(r − pc(λ)))

2

• Statistical noise model assumes larger discrepancy
near the discontinuity:

σ2(λ, r) = σ2
L

(

1− tanh (α(r − pc(λ)))

2

)2

+σ2
R

(

1 + tanh (α(r − pc(λ)))

2

)2

+
β

cosh4 (α(r − pc(λ)))

• Likelihood function:

P (D|Mγ) =
N
∏

i=1

(

P (zi|Mγ)
)

∝ exp

(

−
N
∑

i=1

(zi − g(λ, r))
2

2σ2(λ, r)

)

• Bayes’ formula:

P (Mγ |D) =
P (D|Mγ)P (Mγ)

P (D)
c
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Bayesian inference leads to posterior distribution for all parameters γ. Marginalize over hyperparameters
(mL,mR, α, σL, σR, β) to obtain posterior distribution on the parameters c of the discontinuity curve.

Parameter domain mapping via Rosenblatt transformation

• Rosenblatt transformation [2] (RT) to map the
pair of uncertain parameters (r,λ) to i.i.d. Uni-
form[0,1] random variables η1 and η2:

λ = F−1
λ (η1),

r = F−1
r|λ(η2|η1)

• Apply the RT mapping to both sides of the
discontinuity to obtain PC expansion for the
model output (employing Galerkin projection
or Bayesian inference, see [4]):

Z
L,R
c (λ, r) = Z̃c(η1, η2) =

P
∑

p=0

zpΨp(η1, η2)

• Model expansion depends on the parameter
location with respect to the discontinuity:

Zc(λ, r) =

{

ZL
c (λ, r) if (λ, r) ∈ DL

ZR
c (λ, r) if (λ, r) ∈ DR

.

λ [K]

r
[%

]

2 4

0.5

1

1.5

η
1

η 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η
1

η 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Averaging PC expansions with respect to sample curves

The expectation of the representation Zc(λ, r) with
respect to the K-variate probability distribution
function p(c) of the coefficient vector c:

Ẑ(λ, r) =

∫

C

p(c)Zc(λ, r)dc.

We will use the Rosenblatt transformation ν = R(c)
to map the unknown domain of integration C to a
rectangular domain [0, 1]K .

The vector of random variables ν defined with
the help of the conditional distributions of c has
independent Uniform[0,1]-distributed components.

Then Ẑ(λ, r) can be rewritten as

Ẑ(λ, r) =

∫

[0,1]K
ZR−1(ν)(λ, r)dν.

The latter integral can be taken by quadrature rules

Ẑ(λ, r) ≈
∑

ν∗

ZR−1(ν∗)(λ, r)w
∗.

Climate Sensitivity [K]
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Compare densities from the averaged PC expansion with analytical model

• Sample the parameter space of climate sensitivity and CO2 forcing rate according to input PDF

• Evaluate the MOC streamfunction Z using both the forward model and the averaged PC

• Obtain the PDF of Z by a smooth kernel density estimation

• The MOC exhibits a bimodal behavior and the averaged PC expansion is in good agreement with
the analytical model; details can be found in Sargsyan et al. [3, 4].

Input PDF −−−−−−−−−−−−→ Output PDF
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Ongoing and Future Work

• Extend this approach to incorporate optimal experimental design, i.e. find parameter values at which the model
should be simulated to give maximum information.

• Demonstrate the methodology with data from climate research groups.
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