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Uncertainties in Climate Modeling

e Uncertainty sources

e Parameter uncertainty

o Model parameters
« Initial/boundary conditions
o Model geometry/structure

Model/structural uncertainty

e Unknown physics
o Reduced order models

Scenario uncertainty

o Policy restrictions
e Technology improvement

Intrinsic variability
o Stochastic physics
Numerical errors
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Uncertainties in Climate Modeling

e Uncertainty sources

e Parameter uncertainty

o Model parameters
« Initial/boundary conditions
« Model geometry/structure e Need UQ for...

Model/structural uncertainty Model validation

o Unknown physics Confidence
o Reduced order models assgssment.
Scenario uncertainty Optimal design
. L Data assimilation
o Policy restrictions
e Technology improvement

Intrinsic variability
o Stochastic physics
Numerical errors
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UQ components and methods

Computer
Model

Input Output
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UQ components and methods

Spectral Methods

—

Computer
I Output
nput Model Hipu

e Sensitivity analysis

e Small parameter perturbations
o Predictability assessment

e Larger parameter uncertainties
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UQ components and methods

Spectral Methods

—

Computer
I Output
nput Model Hipu

e Forward UQ methods

e Direct (intrusive)

- Derive new forward model
- Intrusive Spectral Projection (ISP)

e Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo
- Non-intrusive Spectral Projection (NISP)
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

e Truncated PCE: finite dimension n and order p
P
X(A() =Y cxli(n)
k=0

with the number of terms P + 1 = (”nTIj’!)!.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

e Truncated PCE: finite dimension n and order p
P
X(A() =Y cxli(n)
k=0

with the number of terms P + 1 = (”nle’!)!.

e n=(m, - ,n,) standard i.i.d. r.v.

¥, standard orthogonal polynomials
ci spectral modes.

e Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Meridional Overturning Circulation

Thermohaline Circulation

[ ] Salinity (PSS)
32 34 36 38

MOC transports heat from warm to cold regions
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model

3D Ocean general circulation model
Zonally-averaged atmospheric model
Thermodynamic sea-ice model
Simplified models for river runoff

e Input parameters
e Rate of CO, increase (r)
e Climate sensitivity (\)

Latitude
5 o

e Output observable
e Overturning streamfunction (Z)
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3D Ocean general circulation model
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Thermodynamic sea-ice model
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model

3D Ocean general circulation model
Zonally-averaged atmospheric model
Thermodynamic sea-ice model
Simplified models for river runoff

e Input parameters 0s
e Rate of CO, increase (r)
¢ Climate sensitivity (\) 203

0.1

e Output observable
e Overturning streamfunction (Z) T ¢

Climate Sensitivity (A)
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model

e 3D Ocean general circulation model
e Zonally-averaged atmospheric model
e Thermodynamic sea-ice model
e Simplified models for river runoff
7
L] Recovery
e Input parameters ot +_ NoRecovery
e Rate of CO, increase (r) Z o
e Climate sensitivity (1)) % o
[
e
]
e Output observable E e
e Overturning streamfunction (Z) e
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model

3D Ocean general circulation model
Zonally-averaged atmospheric model
Thermodynamic sea-ice model
Simplified models for river runoff

e Input parameters

e Rate of CO, increase (r)
e Climate sensitivity (\)

e Output observable
e Overturning streamfunction (Z)

Maximum North Atlantic Overturning (Sv)
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model

3D Ocean general circulation model
Zonally-averaged atmospheric model
Thermodynamic sea-ice model
Simplified models for river runoff

OVT 1000 for all 62 runs
e Input parameters ‘
e Rate of CO, increase (r)

e Climate sensitivity (\)

e Output observable )
e Overturning streamfunction (2) Lom S
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral
uncertainty quantification methods can be used

e Need to represent model output in a problem-independent
fashion that takes into account the bifurcations

o Bayesian inference of the location of the
discontinuity

e Need to perform uncertainty quantification with only a limited set
of sample points, due to the computational cost of the forward
model

o Polynomial chaos representation via parameter
domain mapping
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Bayesian Inference of the Location of Discontinuity

o Parameterize the discontinuity: r ~ pe(\) = S5, cxPe(N)

e Approximation model:

1 + tanh (a(r — pe(N)))
2

Me =g\ r) =mp + (mg —myg)

¢ Noise model postulated: (), r)

o Likelihood function:
N )2
log P(D|M¢) Zlog (zilMe)) Z

i=1
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Bayesian Inference of the Location of Discontinuity

e Parameterize the discontinuity: r ~ pe(\) = S5, cxPi(N)

e Bayes’ formula: P(M|D) = %

mL discontinuity
sampled by MCMC
0.5
O,
o, P P
(’-l 0.5 0 0.5 1

Input parameter
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Highlights

e Any distribution of input points R S

e Generalizes to multiple dimensions

e Probabilistic representation I
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Discontinuity curve samples and their pdf
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Parameter Domain Mapping

@ Assume linear discontinuity

@ Use Rosenblatt
Transformation (RT) to map
the pair of uncertain
parameters (\,r) to i.i.d.
uniform random variables 7,

and n;:
1- - - - - - - -
o -1 08fa u u] = = 08fa = \ "
A= F)\ (nl)v 08} 06
B Ffl( | ) S R R R R
ro= Fy\(mln AT
e T -

n1 ﬂ1
@ Apply the RT mapping to both
sides of the discontinuity

ROSENBLATT TRANSFORMATION: (X, r) — (11, m2)
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Inference of Discontinuity - 3" order polynomial

@ Synthetic discontinuous data

zi = (14 af)erf (B(ri = 7(\i))) -

@ Use straight lines to infer the
discontinuity

F(A) =co + 1\
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PC expansion, averaged over discontinuity curves

e PC expansion for each discontinuity curve sample:

P
Ze" () =Ze(mum) =Yz (1, m2)
p=0

e Model expansion depends on the parameter location:

ZE(\r) if (\,r) €Dy

zeur) = {zﬁ(A, P if(A\r)eDp’

e Average over all PC expansions via RT:

Z()\, r) :/p(c)Zc()\, r)dc:/ ZRfl(ﬁ)(A, r)dif
C [0,1]K+1

Sargsyan (SNL) SIAM meeting July 14, 2010 12/18



Discontinuous data represented well with the averaged PC

PCE IN (17, 72) DOMAIN OutpuT PDF

Computational Model

8 PC Expansion
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Discontinuous data represented

well with the averaged PC.
9 Resulting output PDF given input

parameter joint PDF.
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¢ A methodology for uncertainty quantification in climate models
with limited data and discontinuities was proposed:

e Bayesian approach to detect and parameterize the
discontinuity as well as the uncertainty associated with it.

¢ Rosenblatt transformation maps each of the irregular
domains to rectangular ones where the application of the
local spectral methods of uncertainty propagation is feasible.

e “Knowledge Discovery from Climate Data: Prediction, Extremes,
and Impacts” Workshop Proceedings - 9th IEEE International
Conference on Data Mining, 2009.

e Full paper in preparation.
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Work in progress

Bring in real climate model data.

Still prohibitively many model runs required: possibly give up
orthogonal projection in favor of Bayesian inference.

Gaussian process emulation to implement uncertainties due to
the lack of knowledge at non-sampled points.

Experimental design: inform climate modelers on the optimal
parameter sets to run simulations.
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UQ methods are challenged by..

e Nonlinearities,
Bifurcations,
Bimodalities

e Tail regions
e Limited data

o Curse of
dimensionality

e Intrinsic stochasticity
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