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Uncertainty Quantification in Climate Modeling

• Uncertainty sources

• Parameter uncertainty

• Model parameters

• Initial/boundary conditions

• Model geometry/structure

• Model uncertainty

• Unknown physics

• Reduced order models

• Scenario uncertainty

• Policy restrictions

• Technology improvement

• Intrinsic variability

• Need UQ for...

• Model validation

• Confidence assessment

• Optimal design

• Data assimilation

Sargsyan (SNL) TriLab UQ meeting June 28, 2010 2 / 17



Uncertainty Quantification in Climate Modeling

• Uncertainty sources

• Parameter uncertainty

• Model parameters

• Initial/boundary conditions

• Model geometry/structure

• Model uncertainty

• Unknown physics

• Reduced order models

• Scenario uncertainty

• Policy restrictions

• Technology improvement

• Intrinsic variability

• Need UQ for...

• Model validation

• Confidence assessment

• Optimal design

• Data assimilation

Sargsyan (SNL) TriLab UQ meeting June 28, 2010 2 / 17



UQ components and methods

Input Computer

Model
Output
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UQ components and methods

Input Computer

Model
Output

Spectral Methods

• Forward UQ methods

• Direct (intrusive)

- Derive new forward model

- Intrusive Spectral Projection (ISP)

• Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo

- Non-intrusive Spectral Projection (NISP)

Sargsyan (SNL) TriLab UQ meeting June 28, 2010 3 / 17



Non-Intrusive Spectral Projection (NISP)

• Polynomial Chaos expansions for input γ and output Z

γ ≈
∑

k

γkΨk(ξ)

Z = f (γ) ≈
∑

k

fkΨk(ξ)

• Orthogonal projection via quadrature to obtain PC modes

fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗
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• non-linearities/bifurcations
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

• Computational model - EMIC

• Input parameters

• Rate of CO2 increase (r)

• Climate sensitivity (λ)

• Output observable

• Overturning
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+
++ ++

+ +

+++++++
+

+ ++ ++ +
+

+

+

+++
+

+
++

Rate of CO
2

increase [%]

C
li
m

a
te

s
e

n
s
it
iv

it
y

[K
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7
Recovery

No Recovery+

Sargsyan (SNL) TriLab UQ meeting June 28, 2010 5 / 17



Global representations fail to capture discontinuities
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be

subdivided into regions with smooth model response where spectral

uncertainty quantification methods can be used

• Need to represent model output in a problem-independent

fashion that takes into account the bifurcations

• Bayesian inference of the location of the

discontinuity

• Need to perform uncertainty quantification with only a limited set

of sample points, due to the computational cost of the forward

model

• Polynomial chaos representation via parameter

domain mapping
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Bayesian Inference of the Location of Discontinuity

• Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

• Approximation model:

Mc ≡ g(λ, r) = mL + (mR − mL)
1 + tanh (α(r − pc(λ)))

2

• Noise model postulated: σ(λ, r)

• Likelihood function:

logP(D|Mc) =
N
∑

i=1

log (P(zi|Mc)) = −
N
∑

i=1

(zi − g(λ, r))2

2σ(λ, r)2
.
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Bayesian Inference of the Location of Discontinuity

• Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

Bayes’ formula:

P(M|D) =
P(D|M)P(M)

P(D)

D
a

ta
Parameters

mH

mL

σH

σL

“Likelihood” “Prior”

“Posterior” “Evidence”
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Parameter Domain Mapping

Assume linear discontinuity

Use Rosenblatt

Transformation (RT) to map

the pair of uncertain

parameters (λ,r) to i.i.d.

uniform random variables η1

and η2:

λ = F−1
λ (η1),

r = F−1
r|λ(η2|η1)

Apply the RT mapping to both

sides of the discontinuity
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Discontinuous data represented well with the averaged PC

PCE IN (η1, η2) DOMAIN OUTPUT PDF

z

p
d

f(
z
)

0 0.5 1
0

2

4

6

8
Computational Model
PC Expansion

MOC
OFF

MOC
ON

Discontinuous data represented

well with the averaged PC.
Resulting output PDF given input

parameter joint PDF.
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Switching gear...

Challenges tackled in this talk

• non-linearities/bifurcations

• low-probability/high-impact events
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Dealing with ‘fat’ tails

• Several climate observables ( e.g. climate sensitivity ) exhibit

heavy tails

• require a significant number of simulations to obtain a good

sampling of these regions

• Construct spectral expansions based on...

• Non-classical bases that cluster points in the tail region

• Bases tailored to the expected behavior of the output

• Use spectral expansions for...

• Propagating distributions from input parameters to output

observables

• Surrogate models to accelerate the inference process in

inverse problems
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Pointwise error is large at low-probability regions

Z = f (γ) ≈
∑

k

fkΨk(ξ) =⇒ fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗
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Non-classical quadrature points span the tails better

Z = f (γ) ≈
∑

k

fkΨk(ξ) =⇒ fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗
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Build a custom PC based on input distribution

• Classical PCEs for input γ and output Z

• ξ is normal, Ψk(·) are Hermite - standard!

γ ≈
∑

k

γkΨk(ξ)

Z = f (γ) ≈
∑

k

fkΨk(ξ)

• Customized PCE for output Z with respect to input distribution:

• γ is any, Φk(·) are found by orthogonalization.

γ = γ (as ‘optimal’ as it gets)

Z = f (γ) ≈
∑

k

fkΦk(γ) (hopefully, near optimal)
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Custom PC Expansions show much better

convergence than standard PCE

Input γ belongs to Roe-Baker climate sensitivity distribution.

Synthetic forward model: f (γ) = cos(γ)
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Summary

• Nonlinearities, Bifurcations, Bimodalities

• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct

model “surrogates”

• Tail regions

• Employ spectral basis that cluster quadrature points in the

tail to construct surrogate models.

• Construct custom spectral basis based on “expected” shape

of the climate model output to improve convergence of the

spectral expansion.
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UQ methods are challenged by..

Nonlinearities,

Bifurcations,

Bimodalities

Tail regions

Limited data

Curse of

dimensionality

Intrinsic stochasticity
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UQ methods are challenged by..
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Inference of Discontinuity - 3rd order polynomial

Synthetic discontinuous data

zi = (1 + σξ) tanh (β(ri − r̃(λi))) .

Use straight lines to infer the

discontinuity

r̃(λ) = c0 + c1λ.
λ

r
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PC expansion, averaged over discontinuity curves

• PC expansion for each discontinuity curve sample:

Z
L,R
c

(λ, r) = Z̃c(η1, η2) =
P
∑

p=0

zpΨ
(2)
p (η1, η2)

• Model expansion depends on the parameter location:

Zc(λ, r) =

{

ZL
c
(λ, r) if (λ, r) ∈ DL

ZR
c
(λ, r) if (λ, r) ∈ DR

.

• Average over all PC expansions via RT:

Ẑ(λ, r) =

∫

C

p(c)Zc(λ, r)dc =

∫

[0,1]K+1

ZR−1(~η)(λ, r)d~η



As a conclusion..

• A methodology for uncertainty quantification in climate models

with limited data and discontinuities was proposed

• Bayesian approach to detect and parameterize the

discontinuity as well as the uncertainty associated with it.

• Rosenblatt transformation maps each of the irregular

domains to rectangular ones where the application of the

local spectral methods of uncertainty propagation is feasible.

• “Knowledge Discovery from Climate Data: Prediction, Extremes,

and Impacts” Workshop Proceedings - 9th IEEE International

Conference on Data Mining, 2009



Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Summary and Future Climate-related Research

• Used our expertise to deal with...

• Non-linearities/bifurcations/bimodalities in climate modeling

• Low-probability/high impact events

• Would like to leverage our expertise in spectral UQ /inverse

problems to...

• improve predictability of climate models

• reduce uncertainties in source attribution (“surrogate”

models, Bayesian experimental design)


